! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Düsseldorf Advanced MAterial Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !-------------------------------------------------------------------------------------------------- ! $Id$ !-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief Isostrain (full constraint Taylor assuption) homogenization scheme !-------------------------------------------------------------------------------------------------- module homogenization_isostrain use prec, only: & pInt implicit none private integer(pInt), dimension(:), allocatable, public, protected :: & homogenization_isostrain_sizeState, & homogenization_isostrain_sizePostResults integer(pInt), dimension(:,:), allocatable, target, public :: & homogenization_isostrain_sizePostResult character(len=64), dimension(:,:), allocatable, target, public :: & homogenization_isostrain_output !< name of each post result output integer(pInt), dimension(:), allocatable, private :: & homogenization_isostrain_Ngrains enum, bind(c) enumerator :: undefined_ID, & nconstituents_ID, & temperature_ID, & ipcoords_ID, & avgdefgrad_ID, & avgfirstpiola_ID end enum enum, bind(c) enumerator :: parallel_ID, & average_ID end enum integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: & homogenization_isostrain_outputID !< ID of each post result output integer(kind(average_ID)), dimension(:), allocatable, private :: & homogenization_isostrain_mapping !< mapping type public :: & homogenization_isostrain_init, & homogenization_isostrain_partitionDeformation, & homogenization_isostrain_averageStressAndItsTangent, & homogenization_isostrain_postResults contains !-------------------------------------------------------------------------------------------------- !> @brief allocates all neccessary fields, reads information from material configuration file !-------------------------------------------------------------------------------------------------- subroutine homogenization_isostrain_init(fileUnit) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use math, only: & math_Mandel3333to66, & math_Voigt66to3333 use IO use material implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: MAXNCHUNKS = 2_pInt integer(pInt), dimension(1_pInt+2_pInt*MAXNCHUNKS) :: positions integer(pInt) :: & section = 0_pInt, i, j, output, mySize integer :: & maxNinstance, k ! no pInt (stores a system dependen value from 'count' character(len=65536) :: & tag = '', & line = '' write(6,'(/,a)') ' <<<+- homogenization_'//HOMOGENIZATION_ISOSTRAIN_label//' init -+>>>' write(6,'(a)') ' $Id$' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" maxNinstance = count(homogenization_type == HOMOGENIZATION_ISOSTRAIN_ID) if (maxNinstance == 0) return allocate(homogenization_isostrain_sizeState(maxNinstance), source=0_pInt) allocate(homogenization_isostrain_sizePostResults(maxNinstance), source=0_pInt) allocate(homogenization_isostrain_sizePostResult(maxval(homogenization_Noutput),maxNinstance), & source=0_pInt) allocate(homogenization_isostrain_Ngrains(maxNinstance), source=0_pInt) allocate(homogenization_isostrain_mapping(maxNinstance), source=average_ID) allocate(homogenization_isostrain_output(maxval(homogenization_Noutput),maxNinstance)) homogenization_isostrain_output = '' allocate(homogenization_isostrain_outputID(maxval(homogenization_Noutput),maxNinstance), & source=undefined_ID) rewind(fileUnit) do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization)! wind forward to line = IO_read(fileUnit) enddo do while (trim(line) /= IO_EOF) ! read through sections of homogenization part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt output = 0_pInt ! reset output counter cycle endif if (section > 0_pInt ) then ! do not short-circuit here (.and. with next if-statement). It's not safe in Fortran if (homogenization_type(section) == HOMOGENIZATION_ISOSTRAIN_ID) then ! one of my sections i = homogenization_typeInstance(section) ! which instance of my type is present homogenization positions = IO_stringPos(line,MAXNCHUNKS) tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key select case(tag) case('type') case ('(output)') output = output + 1_pInt homogenization_isostrain_output(output,i) = IO_lc(IO_stringValue(line,positions,2_pInt)) select case(homogenization_isostrain_output(output,i)) case('nconstituents','ngrains') homogenization_isostrain_outputID(output,i) = nconstituents_ID case('temperature') homogenization_isostrain_outputID(output,i) = temperature_ID case('ipcoords') homogenization_isostrain_outputID(output,i) = ipcoords_ID case('avgdefgrad','avgf') homogenization_isostrain_outputID(output,i) = avgdefgrad_ID case('avgp','avgfirstpiola','avg1stpiola') homogenization_isostrain_outputID(output,i) = avgfirstpiola_ID case default call IO_error(105_pInt,ext_msg=IO_stringValue(line,positions,2_pInt)//& ' ('//HOMOGENIZATION_isostrain_label//')') end select case ('nconstituents','ngrains') homogenization_isostrain_Ngrains(i) = IO_intValue(line,positions,2_pInt) case ('mapping') select case(IO_lc(IO_stringValue(line,positions,2_pInt))) case ('parallel','sum') homogenization_isostrain_mapping(i) = parallel_ID case ('average','mean','avg') homogenization_isostrain_mapping(i) = average_ID case default call IO_error(211_pInt,ext_msg=trim(tag)//' ('//HOMOGENIZATION_isostrain_label//')') end select case default call IO_error(210_pInt,ext_msg=trim(tag)//' ('//HOMOGENIZATION_isostrain_label//')') end select endif endif enddo do k = 1,maxNinstance homogenization_isostrain_sizeState(i) = 0_pInt do j = 1_pInt,maxval(homogenization_Noutput) select case(homogenization_isostrain_outputID(j,i)) case(nconstituents_ID, temperature_ID) mySize = 1_pInt case(ipcoords_ID) mySize = 3_pInt case(avgdefgrad_ID, avgfirstpiola_ID) mySize = 9_pInt case default mySize = 0_pInt end select outputFound: if (mySize > 0_pInt) then homogenization_isostrain_sizePostResult(j,i) = mySize homogenization_isostrain_sizePostResults(i) = & homogenization_isostrain_sizePostResults(i) + mySize endif outputFound enddo enddo end subroutine homogenization_isostrain_init !-------------------------------------------------------------------------------------------------- !> @brief partitions the deformation gradient onto the constituents !-------------------------------------------------------------------------------------------------- subroutine homogenization_isostrain_partitionDeformation(F,avgF,el) use prec, only: & pReal use mesh, only: & mesh_element use material, only: & homogenization_maxNgrains, & homogenization_Ngrains implicit none real(pReal), dimension (3,3,homogenization_maxNgrains), intent(out) :: F !< partioned def grad per grain real(pReal), dimension (3,3), intent(in) :: avgF !< my average def grad integer(pInt), intent(in) :: & el !< element number F = spread(avgF,3,homogenization_Ngrains(mesh_element(3,el))) end subroutine homogenization_isostrain_partitionDeformation !-------------------------------------------------------------------------------------------------- !> @brief derive average stress and stiffness from constituent quantities !-------------------------------------------------------------------------------------------------- subroutine homogenization_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,el) use prec, only: & pReal use mesh, only: & mesh_element use material, only: & homogenization_maxNgrains, & homogenization_Ngrains, & homogenization_typeInstance implicit none real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: P !< array of current grain stresses real(pReal), dimension (3,3,3,3,homogenization_maxNgrains), intent(in) :: dPdF !< array of current grain stiffnesses integer(pInt), intent(in) :: el !< element number integer(pInt) :: & homID, & Ngrains homID = homogenization_typeInstance(mesh_element(3,el)) Ngrains = homogenization_Ngrains(mesh_element(3,el)) select case (homogenization_isostrain_mapping(homID)) case (parallel_ID) avgP = sum(P,3) dAvgPdAvgF = sum(dPdF,5) case (average_ID) avgP = sum(P,3) /real(Ngrains,pReal) dAvgPdAvgF = sum(dPdF,5)/real(Ngrains,pReal) end select end subroutine homogenization_isostrain_averageStressAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief return array of homogenization results for post file inclusion !-------------------------------------------------------------------------------------------------- pure function homogenization_isostrain_postResults(ip,el,avgP,avgF) use prec, only: & pReal use mesh, only: & mesh_element, & mesh_ipCoordinates use material, only: & homogenization_typeInstance, & homogenization_Noutput use crystallite, only: & crystallite_temperature implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number real(pReal), dimension(3,3), intent(in) :: & avgP, & !< average stress at material point avgF !< average deformation gradient at material point real(pReal), dimension(homogenization_isostrain_sizePostResults & (homogenization_typeInstance(mesh_element(3,el)))) :: & homogenization_isostrain_postResults integer(pInt) :: & homID, & o, c c = 0_pInt homID = homogenization_typeInstance(mesh_element(3,el)) homogenization_isostrain_postResults = 0.0_pReal do o = 1_pInt,homogenization_Noutput(mesh_element(3,el)) select case(homogenization_isostrain_outputID(o,homID)) case (nconstituents_ID) homogenization_isostrain_postResults(c+1_pInt) = real(homogenization_isostrain_Ngrains(homID),pReal) c = c + 1_pInt case (temperature_ID) homogenization_isostrain_postResults(c+1_pInt) = crystallite_temperature(ip,el) c = c + 1_pInt case (avgdefgrad_ID) homogenization_isostrain_postResults(c+1_pInt:c+9_pInt) = reshape(avgF,[9]) c = c + 9_pInt case (avgfirstpiola_ID) homogenization_isostrain_postResults(c+1_pInt:c+9_pInt) = reshape(avgP,[9]) c = c + 9_pInt case (ipcoords_ID) homogenization_isostrain_postResults(c+1_pInt:c+3_pInt) = mesh_ipCoordinates(1:3,ip,el) ! current ip coordinates c = c + 3_pInt end select enddo end function homogenization_isostrain_postResults end module homogenization_isostrain