!-------------------------------------------------------------------------------------------------- !> @author Martin Diehl, KU Leuven !-------------------------------------------------------------------------------------------------- submodule(homogenization) thermal interface module subroutine pass_init end subroutine pass_init module subroutine isotemperature_init end subroutine isotemperature_init end interface type :: tDataContainer real(pReal), dimension(:), allocatable :: T, dot_T end type tDataContainer type(tDataContainer), dimension(:), allocatable :: current type :: tParameters character(len=pStringLen), allocatable, dimension(:) :: & output end type tParameters type(tparameters), dimension(:), allocatable :: & param contains !-------------------------------------------------------------------------------------------------- !> @brief Allocate variables and set parameters. !-------------------------------------------------------------------------------------------------- module subroutine thermal_init() class(tNode), pointer :: & configHomogenizations, & configHomogenization, & configHomogenizationThermal integer :: ho print'(/,1x,a)', '<<<+- homogenization:thermal init -+>>>' configHomogenizations => config_material%get('homogenization') allocate(param(configHomogenizations%length)) allocate(current(configHomogenizations%length)) do ho = 1, configHomogenizations%length allocate(current(ho)%T(count(material_homogenizationID==ho)), source=T_ROOM) allocate(current(ho)%dot_T(count(material_homogenizationID==ho)), source=0.0_pReal) configHomogenization => configHomogenizations%get(ho) associate(prm => param(ho)) if (configHomogenization%contains('thermal')) then configHomogenizationThermal => configHomogenization%get('thermal') #if defined (__GFORTRAN__) prm%output = output_as1dString(configHomogenizationThermal) #else prm%output = configHomogenizationThermal%get_as1dString('output',defaultVal=emptyStringArray) #endif select case (configHomogenizationThermal%get_asString('type')) case ('pass') call pass_init() case ('isotemperature') call isotemperature_init() end select else prm%output = emptyStringArray end if end associate end do end subroutine thermal_init !-------------------------------------------------------------------------------------------------- !> @brief Partition temperature onto the individual constituents. !-------------------------------------------------------------------------------------------------- module subroutine thermal_partition(ce) integer, intent(in) :: ce real(pReal) :: T, dot_T integer :: co T = current(material_homogenizationID(ce))%T(material_homogenizationEntry(ce)) dot_T = current(material_homogenizationID(ce))%dot_T(material_homogenizationEntry(ce)) do co = 1, homogenization_Nconstituents(material_homogenizationID(ce)) call phase_thermal_setField(T,dot_T,co,ce) end do end subroutine thermal_partition !-------------------------------------------------------------------------------------------------- !> @brief Homogenize thermal viscosity. !-------------------------------------------------------------------------------------------------- module function homogenization_mu_T(ce) result(mu) integer, intent(in) :: ce real(pReal) :: mu integer :: co mu = phase_mu_T(1,ce)*material_v(1,ce) do co = 2, homogenization_Nconstituents(material_homogenizationID(ce)) mu = mu + phase_mu_T(co,ce)*material_v(co,ce) end do end function homogenization_mu_T !-------------------------------------------------------------------------------------------------- !> @brief Homogenize thermal conductivity. !-------------------------------------------------------------------------------------------------- module function homogenization_K_T(ce) result(K) integer, intent(in) :: ce real(pReal), dimension(3,3) :: K integer :: co K = phase_K_T(1,ce)*material_v(1,ce) do co = 2, homogenization_Nconstituents(material_homogenizationID(ce)) K = K + phase_K_T(co,ce)*material_v(co,ce) end do end function homogenization_K_T !-------------------------------------------------------------------------------------------------- !> @brief Homogenize heat generation rate. !-------------------------------------------------------------------------------------------------- module function homogenization_f_T(ce) result(f) integer, intent(in) :: ce real(pReal) :: f integer :: co f = phase_f_T(material_phaseID(1,ce),material_phaseEntry(1,ce))*material_v(1,ce) do co = 2, homogenization_Nconstituents(material_homogenizationID(ce)) f = f + phase_f_T(material_phaseID(co,ce),material_phaseEntry(co,ce))*material_v(co,ce) end do end function homogenization_f_T !-------------------------------------------------------------------------------------------------- !> @brief Set thermal field and its rate (T and dot_T). !-------------------------------------------------------------------------------------------------- module subroutine homogenization_thermal_setField(T,dot_T, ce) integer, intent(in) :: ce real(pReal), intent(in) :: T, dot_T current(material_homogenizationID(ce))%T(material_homogenizationEntry(ce)) = T current(material_homogenizationID(ce))%dot_T(material_homogenizationEntry(ce)) = dot_T call thermal_partition(ce) end subroutine homogenization_thermal_setField !-------------------------------------------------------------------------------------------------- !> @brief writes results to HDF5 output file !-------------------------------------------------------------------------------------------------- module subroutine thermal_results(ho,group) integer, intent(in) :: ho character(len=*), intent(in) :: group integer :: o associate(prm => param(ho)) outputsLoop: do o = 1,size(prm%output) select case(trim(prm%output(o))) case('T') call results_writeDataset(current(ho)%T,group,'T','temperature','K') end select end do outputsLoop end associate end subroutine thermal_results end submodule thermal