removed cut_off parameter for damask_spectral
removed outpot of derived divergence measures and added RMS output in brackets
added comments and options to the makefile
added compiler switches for gfortran and ifort to check for standard conformity
old gnu compilers <4.4 are not longer supported because they don't provide the c binding for fftw
renamed some math functions, so that we have a universal naming scheme: for matrix multiplications use an "x" (e.g. math_mul33x3); don't use the "x" to describe the shape of the tensor that the function is applied to (e.g. math_invert33 instead of math_invert3x3)
-removed to long lines
-restructured f2py modules and merged make_DAMASK2Python into setup processing
-setup_code.py now sets library path in makefile and asks for compile switches for spectral code
-substituted \ in format strings with $
restructured DAMASK_spectral:
-more logical output and structure of code
-better input for spectral debug parameters
- removed unnecessary "return" before end of subroutine or function:
- changed undetermined array length (:) to (1:3)
To prevent problems with some code analysing tools:
- "3D oneliner loops" (with ";) only for "do" and "enddo" at the same time
- removed line continuation in OMP statements
made the makefile more flexible, removed heap-arrays switch
* replaced "dble" intrinsic function by "real" with pReal kind in constitutive_nonlocal.f90
* removed useless line breaks in output of state in CPFEM.f90
* Also added some more openmp directives to increase percentage of parallelized code.
* "implicit none" was missing in two subroutines of homogenization and constitutive.
0 : only version infos and all from "hypela2"/"umat"
1 : basic outputs from "CPFEM.f90", basic output from initialization routines, debug_info
2 : extensive outputs from "CPFEM.f90", extensive output from initialization routines
3 : basic outputs from "homogenization.f90"
4 : extensive outputs from "homogenization.f90"
5 : basic outputs from "crystallite.f90"
6 : extensive outputs from "crystallite.f90"
7 : basic outputs from the constitutive files
8 : extensive outputs from the constitutive files
If verbosity is equal to zero, all counters in debug are not set during calculation (e.g. debug_StressLoopDistribution or debug_cumDotStateTicks). This might speed up parallel calculation, because all these need critical statements which extremely slow down parallel computation.
In order to keep it like that, please follow these simple rules:
DON'T use implicit array subscripts:
example: real, dimension(3,3) :: A,B
A(:,2) = B(:,1) <--- DON'T USE
A(1:3,2) = B(1:3,1) <--- BETTER USE
In many cases the use of explicit array subscripts is inevitable for parallelization. Additionally, it is an easy means to prevent memory leaks.
Enclose all write statements with the following:
!$OMP CRITICAL (write2out)
<your write statement>
!$OMP END CRITICAL (write2out)
Whenever you change something in the code and are not sure if it affects parallelization and leads to nonconforming behavior, please ask me and/or Franz to check this.
* removed input variables in constitutive_collectDotState and constitutive_postResults that are not needed anymore (because of recent changes in constitutive_nonlocal)