previously was:
if (the_sum /= 1.0_pReal) then (error 170)
this condition is too strict. it may give problem with some numerical truncation error.
now becomes:
if (abs(the_sum - 1.0_pReal) >= 1.0e-10_pReal) then (error 170)
(1) subStepSizeHomog and subStepSizeCryst := size of substep when cut-back is applied (initially was hard-coded).
(2) stepIncreaseHomog and stepIncreaseCryst := step increase when calculation for substep converge (was also hardcoded).
introduced a possibility to choose different finite difference scheme, i.e., forward-, backward- and central-difference, for computing grain numerical tangent. note that central-difference scheme will slow down the computation significantly. please use it only if necessary.
parameters to set these new features have been included in numerics.f90 and numerics.config, whereas corresponding error messages have been introduced in the IO.f90
in constitutive_nonlocal.f90:
Derivatives of shear rates w.r.t. resolved shear stress HAVE to be positive.
Computation of dgdot_dtauslip is now correct.
cleaning up of twin system nomenclature
introduced lookup mechanism to calculate the twinning shears depending on the c/a ratio of the present structure (was [wrongly!!] hardcoded to Titanium)
- read in activation energy for dislocation glide from material.config
- changed naming of dDipMin/Max to dLower/dUpper
- added new outputs: rho_dot, rho_dot_dip, rho_dot_gen, rho_dot_sgl2dip, rho_dot_dip2sgl, rho_dot_ann_ath, rho_dot_ann_the, rho_dot_flux, d_upper_edge, d_upper_screw, d_upper_dot_edge, d_upper_dot_screw
- poisson's ratio is now calculated from elastic constants
- microstrucutre has state as first argument, since this is our output variable
- periodic boundary conditions are taken into account for fluxes and internal stresses. for the moment, flag has to be set in constitutive_nonlocal.
- corrected calculation for dipole formation by glide
- added terms for dipole formation/annihilation by stress decrease/increase
constitutive:
- passing of arguments is adapted for constitutive_nonlocal model
crystallite:
- in stiffness calculation: call to collect_dotState used wrong arguments
- crystallite_postResults uses own Tstar_v and temperature, no need for passing them from materialpoint_postResults
homogenization:
- crystallite_postResults uses own Tstar_v and temperature, no need for passing them from materialpoint_postResults
IO:
- changed error message 229
material.config:
- changed example for nonlocal constitution according to constitutive_nonlocal
all:
- added some flush statements
crystallite does not accelerate anymore, since, typically, longer step immediately fails and uses resources in vain. (future: remember number of successful steps to increase step size after x of those...)
# IO has some additional functionality for Abaqus parsing
# ping pong scheme in FE interface now similar (and more human understandable) in both versions
# mesh has better splitting of different tasks, plus operation on database whenever possible
# FEsolver as new global var to indicate FEM solver type
# computation mode reshuffling: 6 is now Marc special case of recycling...