commented and cleaned up the marc interface.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
For marc simulations, run
./code/setup/setup_code.sh
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
added -fmodule-private to compile options for gfortran, i.e. gfortran won't compile anymore if an entity is not explicitly declared as public but used in another module to ensure stronger encapsulation
serial calc now skips IPs when /elementhomogeneous/
for /elementhomogeneous/ IPs > 1 individually copy the result from IP 1 to prevent spuriously outdating themselves.
saves to copy same geometry description for different elements that are essentially similar regarding the IP number but differ in total node count.
introduced quadratic tetrahedron (Marc element 127 -- element 157 might also work, but did not perform well in fully elastic calc so far)
Mainly affected modules are IO and mesh. Most of the changes in mesh result from reordering the functions when grouping them depending on their solver.
Further advantage is that FE solver do not need FFTW and kdtree2 anymore. The include files for these two libraries moved to DAMASKROO/lib now as I figured out how to use a include path in the Makefile.
Put all the files I got when testing compilation with abaqus in a folder which to become the abaqus compilation test.
added compiler switches for gfortran and ifort to check for standard conformity
old gnu compilers <4.4 are not longer supported because they don't provide the c binding for fftw
renamed some math functions, so that we have a universal naming scheme: for matrix multiplications use an "x" (e.g. math_mul33x3); don't use the "x" to describe the shape of the tensor that the function is applied to (e.g. math_invert33 instead of math_invert3x3)
restart write is on per default
restart read is switched on by using --restart or -r INT where INT gives step at which the calculation should restart
setting INT to a value <1 will turn restart write off
* Marc: node displacements are added to initial node coordinates (mesh_node0) to get current node positions (mesh_node), then ip coordinates are deduced
* Abaqus: ip coordinates are directly updated, no update of node coordinates!
* Spectral: for the moment no update of either ip or node coordinates! passing only dummy values with initial ip coordinates
* replaced "dble" intrinsic function by "real" with pReal kind in constitutive_nonlocal.f90
* removed useless line breaks in output of state in CPFEM.f90
* Also added some more openmp directives to increase percentage of parallelized code.
* "implicit none" was missing in two subroutines of homogenization and constitutive.
0 : only version infos and all from "hypela2"/"umat"
1 : basic outputs from "CPFEM.f90", basic output from initialization routines, debug_info
2 : extensive outputs from "CPFEM.f90", extensive output from initialization routines
3 : basic outputs from "homogenization.f90"
4 : extensive outputs from "homogenization.f90"
5 : basic outputs from "crystallite.f90"
6 : extensive outputs from "crystallite.f90"
7 : basic outputs from the constitutive files
8 : extensive outputs from the constitutive files
If verbosity is equal to zero, all counters in debug are not set during calculation (e.g. debug_StressLoopDistribution or debug_cumDotStateTicks). This might speed up parallel calculation, because all these need critical statements which extremely slow down parallel computation.
In order to keep it like that, please follow these simple rules:
DON'T use implicit array subscripts:
example: real, dimension(3,3) :: A,B
A(:,2) = B(:,1) <--- DON'T USE
A(1:3,2) = B(1:3,1) <--- BETTER USE
In many cases the use of explicit array subscripts is inevitable for parallelization. Additionally, it is an easy means to prevent memory leaks.
Enclose all write statements with the following:
!$OMP CRITICAL (write2out)
<your write statement>
!$OMP END CRITICAL (write2out)
Whenever you change something in the code and are not sure if it affects parallelization and leads to nonconforming behavior, please ask me and/or Franz to check this.
* also put a call to constitutive_microstructure at the start of each crystallite_integration subroutine like it was before. need that for nonlocal model in case of crystallite cutback