using Voigt notation instead of proprietary scaled 6x6 notation

Note: This results in a change of behavior for the transformation
systems of dislotwin. I assume that this fixes a bug, but still need to
confirm where the equations in lattice_C66_trans come from
This commit is contained in:
Martin Diehl 2021-11-19 07:29:40 +01:00
parent fa8218124a
commit ff9fa1d4f7
3 changed files with 17 additions and 14 deletions

View File

@ -522,7 +522,7 @@ function lattice_C66_twin(Ntwin,C66,lattice,CoverA)
do i = 1, sum(Ntwin) do i = 1, sum(Ntwin)
call R%fromAxisAngle([coordinateSystem(1:3,2,i),PI],P=1) ! ToDo: Why always 180 deg? call R%fromAxisAngle([coordinateSystem(1:3,2,i),PI],P=1) ! ToDo: Why always 180 deg?
lattice_C66_twin(1:6,1:6,i) = math_sym3333to66(R%rotTensor4(math_66toSym3333(C66))) lattice_C66_twin(1:6,1:6,i) = math_3333toVoigt66(R%rotTensor4(math_Voigt66to3333(C66)))
enddo enddo
end function lattice_C66_twin end function lattice_C66_twin
@ -572,16 +572,16 @@ function lattice_C66_trans(Ntrans,C_parent66,lattice_target, &
call IO_error(137,ext_msg='lattice_C66_trans : '//trim(lattice_target)) call IO_error(137,ext_msg='lattice_C66_trans : '//trim(lattice_target))
endif endif
do i = 1, 6 do i = 1,6
if (abs(C_target_unrotated66(i,i))<tol_math_check) & if (abs(C_target_unrotated66(i,i))<tol_math_check) &
call IO_error(135,el=i,ext_msg='matrix diagonal "el"ement in transformation') call IO_error(135,el=i,ext_msg='matrix diagonal "el"ement in transformation')
enddo enddo
call buildTransformationSystem(Q,S,Ntrans,cOverA_trans,a_fcc,a_bcc) call buildTransformationSystem(Q,S,Ntrans,cOverA_trans,a_fcc,a_bcc)
do i = 1, sum(Ntrans) do i = 1,sum(Ntrans)
call R%fromMatrix(Q(1:3,1:3,i)) call R%fromMatrix(Q(1:3,1:3,i))
lattice_C66_trans(1:6,1:6,i) = math_sym3333to66(R%rotTensor4(math_66toSym3333(C_target_unrotated66))) lattice_C66_trans(1:6,1:6,i) = math_3333toVoigt66(R%rotTensor4(math_Voigt66to3333(C_target_unrotated66)))
enddo enddo
end function lattice_C66_trans end function lattice_C66_trans

View File

@ -130,6 +130,7 @@ end function elastic_nu
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief returns the 2nd Piola-Kirchhoff stress tensor and its tangent with respect to !> @brief returns the 2nd Piola-Kirchhoff stress tensor and its tangent with respect to
!> the elastic and intermediate deformation gradients using Hooke's law !> the elastic and intermediate deformation gradients using Hooke's law
! ToDo: Use Voigt matrix directly
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module subroutine phase_hooke_SandItsTangents(S, dS_dFe, dS_dFi, & module subroutine phase_hooke_SandItsTangents(S, dS_dFe, dS_dFi, &
Fe, Fi, ph, en) Fe, Fi, ph, en)
@ -166,7 +167,7 @@ end subroutine phase_hooke_SandItsTangents
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief returns the homogenized elasticity matrix !> @brief Return the homogenized elasticity matrix.
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module function phase_homogenizedC66(ph,en) result(C) module function phase_homogenizedC66(ph,en) result(C)
@ -176,7 +177,7 @@ module function phase_homogenizedC66(ph,en) result(C)
plasticType: select case (phase_plasticity(ph)) plasticType: select case (phase_plasticity(ph))
case (PLASTICITY_DISLOTWIN_ID) plasticType case (PLASTICITY_DISLOTWIN_ID) plasticType
C = math_3333toVoigt66(math_66toSym3333(plastic_dislotwin_homogenizedC(ph,en))) C = plastic_dislotwin_homogenizedC(ph,en)
case default plasticType case default plasticType
C = elastic_C66(ph,en) C = elastic_C66(ph,en)
end select plasticType end select plasticType

View File

@ -473,27 +473,29 @@ module function plastic_dislotwin_homogenizedC(ph,en) result(homogenizedC)
integer, intent(in) :: & integer, intent(in) :: &
ph, en ph, en
real(pReal), dimension(6,6) :: & real(pReal), dimension(6,6) :: &
homogenizedC, & homogenizedC
C66
real(pReal), dimension(6,6) :: &
C
real(pReal), dimension(:,:,:), allocatable :: & real(pReal), dimension(:,:,:), allocatable :: &
C66_tw, & C66_tw, &
C66_tr C66_tr
integer :: i integer :: i
real(pReal) :: f_unrotated real(pReal) :: f_unrotated
associate(prm => param(ph), stt => state(ph))
C66 = math_sym3333to66(math_Voigt66to3333(elastic_C66(ph,en))) C = elastic_C66(ph,en)
associate(prm => param(ph), stt => state(ph))
f_unrotated = 1.0_pReal & f_unrotated = 1.0_pReal &
- sum(stt%f_tw(1:prm%sum_N_tw,en)) & - sum(stt%f_tw(1:prm%sum_N_tw,en)) &
- sum(stt%f_tr(1:prm%sum_N_tr,en)) - sum(stt%f_tr(1:prm%sum_N_tr,en))
homogenizedC = f_unrotated * C66 homogenizedC = f_unrotated * C
twinActive: if (prm%sum_N_tw > 0) then twinActive: if (prm%sum_N_tw > 0) then
C66_tw = lattice_C66_twin(prm%N_tw,C66,phase_lattice(ph),phase_cOverA(ph)) C66_tw = lattice_C66_twin(prm%N_tw,C,phase_lattice(ph),phase_cOverA(ph))
do i=1,prm%sum_N_tw do i=1,prm%sum_N_tw
homogenizedC = homogenizedC & homogenizedC = homogenizedC &
+ stt%f_tw(i,en)*C66_tw(1:6,1:6,i) + stt%f_tw(i,en)*C66_tw(1:6,1:6,i)
@ -501,7 +503,7 @@ module function plastic_dislotwin_homogenizedC(ph,en) result(homogenizedC)
end if twinActive end if twinActive
transActive: if (prm%sum_N_tr > 0) then transActive: if (prm%sum_N_tr > 0) then
C66_tr = lattice_C66_trans(prm%N_tr,C66,prm%lattice_tr,0.0_pReal,prm%a_cI,prm%a_cF) C66_tr = lattice_C66_trans(prm%N_tr,C,prm%lattice_tr,0.0_pReal,prm%a_cI,prm%a_cF)
do i=1,prm%sum_N_tr do i=1,prm%sum_N_tr
homogenizedC = homogenizedC & homogenizedC = homogenizedC &
+ stt%f_tr(i,en)*C66_tr(1:6,1:6,i) + stt%f_tr(i,en)*C66_tr(1:6,1:6,i)