Merge branch 'development' into 12-fixOrientationSampling

This commit is contained in:
Martin Diehl 2018-03-13 04:37:41 +01:00
commit ff2c950d20
2 changed files with 9 additions and 22 deletions

View File

@ -1 +1 @@
v2.0.1-1104-g88c46d5 v2.0.1-1110-g52c9954

View File

@ -166,28 +166,15 @@ for name in filenames:
grainEuler[2,:] *= 360.0 # phi_2 is uniformly distributed grainEuler[2,:] *= 360.0 # phi_2 is uniformly distributed
if not options.selective: if not options.selective:
seeds = np.array([]) n = np.maximum(np.ones(3),np.array(options.grid*options.fraction),
dtype=int,casting='unsafe') # find max grid indices within fraction
while len(seeds) < options.N: meshgrid = np.meshgrid(*map(np.arange,n),indexing='ij') # create a meshgrid within fraction
coords = np.vstack((meshgrid[0],meshgrid[1],meshgrid[2])).reshape(3,n.prod()).T # assemble list of 3D coordinates
theSeeds = np.zeros((options.N,3),dtype=float) # seed positions array seeds = ((random.sample(coords,options.N)+np.random.random(options.N*3).reshape(options.N,3))\
gridpoints = random.sample(range(gridSize),options.N) # choose first N from random permutation of grid positions / \
(n/options.fraction)).T # pick options.N of those, rattle position,
theSeeds[:,0] = (np.mod(gridpoints ,options.grid[0])\ # and rescale to fall within fraction
+np.random.random(options.N)) /options.grid[0]
theSeeds[:,1] = (np.mod(gridpoints// options.grid[0] ,options.grid[1])\
+np.random.random(options.N)) /options.grid[1]
theSeeds[:,2] = (np.mod(gridpoints//(options.grid[1]*options.grid[0]),options.grid[2])\
+np.random.random(options.N)) /options.grid[2]
goodSeeds = theSeeds[np.all(theSeeds<=options.fraction,axis=1)] # pick seeds within threshold fraction
seeds = goodSeeds if len(seeds) == 0 else np.vstack((seeds,goodSeeds))
if len(seeds) > options.N: seeds = seeds[:min(options.N,len(seeds))]
seeds = seeds.T # switch layout to point index as last index
else: else:
seeds = np.zeros((options.N,3),dtype=float) # seed positions array seeds = np.zeros((options.N,3),dtype=float) # seed positions array
seeds[0] = np.random.random(3)*options.grid/max(options.grid) seeds[0] = np.random.random(3)*options.grid/max(options.grid)
i = 1 # start out with one given point i = 1 # start out with one given point