Merge branch 'nonlocal-again-with-Marc' into 'development'

Nonlocal again with marc

See merge request damask/DAMASK!99
This commit is contained in:
Franz Roters 2019-10-18 11:30:15 +02:00
commit fea6c268a8
8 changed files with 452 additions and 296 deletions

View File

@ -44,7 +44,6 @@ module IO
IO_extractValue, &
IO_countDataLines
#elif defined(Marc4DAMASK)
IO_skipChunks, &
IO_fixedNoEFloatValue, &
IO_fixedIntValue, &
IO_countNumericalDataLines
@ -403,7 +402,7 @@ pure function IO_stringPos(string)
left = right + verify(string(right+1:),SEP)
right = left + scan(string(left:),SEP) - 2
if ( string(left:left) == '#' ) exit
IO_stringPos = [IO_stringPos,left, right]
IO_stringPos = [IO_stringPos,left,right]
IO_stringPos(1) = IO_stringPos(1)+1
endOfString: if (right < left) then
IO_stringPos(IO_stringPos(1)*2+1) = len_trim(string)
@ -1023,27 +1022,6 @@ integer function IO_countNumericalDataLines(fileUnit)
backspace(fileUnit)
end function IO_countNumericalDataLines
!--------------------------------------------------------------------------------------------------
!> @brief reads file to skip (at least) N chunks (may be over multiple lines)
!--------------------------------------------------------------------------------------------------
subroutine IO_skipChunks(fileUnit,N)
integer, intent(in) :: fileUnit, & !< file handle
N !< minimum number of chunks to skip
integer :: remainingChunks
character(len=65536) :: line
line = ''
remainingChunks = N
do while (trim(line) /= IO_EOF .and. remainingChunks > 0)
line = IO_read(fileUnit)
remainingChunks = remainingChunks - (size(IO_stringPos(line))-1)/2
enddo
end subroutine IO_skipChunks
#endif

View File

@ -14,11 +14,11 @@
#include "Lambert.f90"
#include "rotations.f90"
#include "FEsolving.f90"
#include "geometry_plastic_nonlocal.f90"
#include "element.f90"
#include "mesh_base.f90"
#include "HDF5_utilities.f90"
#include "results.f90"
#include "geometry_plastic_nonlocal.f90"
#include "discretization.f90"
#ifdef Abaqus
#include "mesh_abaqus.f90"

View File

@ -146,11 +146,11 @@ module element
8 & ! 3D 8node
] !< number of cell nodes in a specific cell type
! *** FE_ipNeighbor ***
! is a list of the neighborhood of each IP.
! *** IPneighbor ***
! list of the neighborhood of each IP.
! It is sorted in (local) +x,-x, +y,-y, +z,-z direction.
! Positive integers denote an intra-FE IP identifier.
! Negative integers denote the interface behind which the neighboring (extra-FE) IP will be located.
! Positive integers denote an intra-element IP identifier.
! Negative integers denote the interface behind which the neighboring (extra-element) IP will be located.
integer, dimension(nIPneighbor(cellType(1)),nIP(1)), parameter, private :: IPneighbor1 = &
reshape([&
@ -256,10 +256,6 @@ module element
-3,26,-4,24,-6,18 &
],[nIPneighbor(cellType(10)),nIP(10)])
! MD: probably not needed END
! --------------------------------------------------------------------------------------------------
integer, dimension(nNode(1),NcellNode(geomType(1))), parameter :: cellNodeParentNodeWeights1 = &
reshape([&
@ -757,7 +753,7 @@ subroutine tElement_init(self,elemType)
self%cell = CELL10
end select
self%NcellNodesPerCell = NCELLNODEPERCELL(self%cellType)
self%NcellnodesPerCell = NCELLNODEPERCELL(self%cellType)
select case(self%cellType)
case(1)

View File

@ -7,6 +7,7 @@
!--------------------------------------------------------------------------------------------------
module geometry_plastic_nonlocal
use prec
use results
implicit none
private
@ -32,6 +33,7 @@ module geometry_plastic_nonlocal
geometry_plastic_nonlocal_setIPvolume, &
geometry_plastic_nonlocal_setIParea, &
geometry_plastic_nonlocal_setIPareaNormal, &
geometry_plastic_nonlocal_results, &
geometry_plastic_nonlocal_disable
contains
@ -112,4 +114,45 @@ subroutine geometry_plastic_nonlocal_disable
end subroutine geometry_plastic_nonlocal_disable
!---------------------------------------------------------------------------------------------------
!> @brief Writes geometry data to results file
!---------------------------------------------------------------------------------------------------
subroutine geometry_plastic_nonlocal_results
integer, dimension(:), allocatable :: shp
#if defined(DAMASK_HDF5)
call results_openJobFile
writeVolume: block
real(pReal), dimension(:), allocatable :: temp
shp = shape(geometry_plastic_nonlocal_IPvolume0)
temp = reshape(geometry_plastic_nonlocal_IPvolume0,[shp(1)*shp(2)])
call results_writeDataset('geometry',temp,'v_0',&
'initial cell volume','m³')
end block writeVolume
writeAreas: block
real(pReal), dimension(:,:), allocatable :: temp
shp = shape(geometry_plastic_nonlocal_IParea0)
temp = reshape(geometry_plastic_nonlocal_IParea0,[shp(1),shp(2)*shp(3)])
call results_writeDataset('geometry',temp,'a_0',&
'initial cell face area','m²')
end block writeAreas
writeNormals: block
real(pReal), dimension(:,:,:), allocatable :: temp
shp = shape(geometry_plastic_nonlocal_IPareaNormal0)
temp = reshape(geometry_plastic_nonlocal_IPareaNormal0,[shp(1),shp(2),shp(3)*shp(4)])
call results_writeDataset('geometry',temp,'n_0',&
'initial cell face normals','-',transposed=.false.)
end block writeNormals
call results_closeJobFile
#endif
end subroutine geometry_plastic_nonlocal_results
end module geometry_plastic_nonlocal

View File

@ -1307,10 +1307,10 @@ real(pReal) pure function math_volTetrahedron(v1,v2,v3,v4)
real(pReal), dimension (3,3) :: m
m(1:3,1) = v1-v2
m(1:3,2) = v2-v3
m(1:3,3) = v3-v4
m(1:3,2) = v1-v3
m(1:3,3) = v1-v4
math_volTetrahedron = math_det33(m)/6.0_pReal
math_volTetrahedron = abs(math_det33(m))/6.0_pReal
end function math_volTetrahedron
@ -1404,6 +1404,7 @@ subroutine unitTest
integer, dimension(5) :: range_out_ = [1,2,3,4,5]
real(pReal) :: det
real(pReal), dimension(3) :: v3_1,v3_2,v3_3,v3_4
real(pReal), dimension(6) :: v6
real(pReal), dimension(9) :: v9
real(pReal), dimension(3,3) :: t33,t33_2
@ -1452,6 +1453,15 @@ subroutine unitTest
if(any(dNeq0(math_6toSym33(v6) - math_symmetric33(math_6toSym33(v6))))) &
call IO_error(401,ext_msg='math_symmetric33')
call random_number(v3_1)
call random_number(v3_2)
call random_number(v3_3)
call random_number(v3_4)
if(dNeq(abs(dot_product(math_cross(v3_1-v3_4,v3_2-v3_4),v3_3-v3_4))/6.0, &
math_volTetrahedron(v3_1,v3_2,v3_3,v3_4),tol=1.0e-12_pReal)) &
call IO_error(401,ext_msg='math_volTetrahedron')
call random_number(t33)
if(dNeq(math_det33(math_symmetric33(t33)),math_detSym33(math_symmetric33(t33)),tol=1.0e-12_pReal)) &
call IO_error(401,ext_msg='math_det33/math_detSym33')

View File

@ -28,8 +28,7 @@ module mesh
integer, public, protected :: &
mesh_Nboundaries, &
mesh_NcpElems, & !< total number of CP elements in mesh
mesh_NcpElemsGlobal, &
mesh_Nnodes !< total number of nodes in mesh
mesh_NcpElemsGlobal
!!!! BEGIN DEPRECATED !!!!!
integer, public, protected :: &
@ -69,8 +68,7 @@ module mesh
public :: &
mesh_init, &
mesh_FEM_build_ipVolumes, &
mesh_FEM_build_ipCoordinates, &
mesh_cellCenterCoordinates
mesh_FEM_build_ipCoordinates
contains
@ -107,7 +105,8 @@ subroutine mesh_init
integer, parameter :: FILEUNIT = 222
integer :: j
integer, allocatable, dimension(:) :: chunkPos
integer :: dimPlex
integer :: dimPlex, &
mesh_Nnodes !< total number of nodes in mesh
integer, parameter :: &
mesh_ElemType=1 !< Element type of the mesh (only support homogeneous meshes)
character(len=512) :: &
@ -228,26 +227,8 @@ subroutine mesh_init
end subroutine mesh_init
!--------------------------------------------------------------------------------------------------
!> @brief Calculates cell center coordinates.
!--------------------------------------------------------------------------------------------------
pure function mesh_cellCenterCoordinates(ip,el)
integer, intent(in) :: el, & !< element number
ip !< integration point number
real(pReal), dimension(3) :: mesh_cellCenterCoordinates !< x,y,z coordinates of the cell center of the requested IP cell
end function mesh_cellCenterCoordinates
!--------------------------------------------------------------------------------------------------
!> @brief Calculates IP volume. Allocates global array 'mesh_ipVolume'
!> @details The IP volume is calculated differently depending on the cell type.
!> 2D cells assume an element depth of one in order to calculate the volume.
!> For the hexahedral cell we subdivide the cell into subvolumes of pyramidal
!> shape with a cell face as basis and the central ip at the tip. This subvolume is
!> calculated as an average of four tetrahedals with three corners on the cell face
!> and one corner at the central ip.
!--------------------------------------------------------------------------------------------------
subroutine mesh_FEM_build_ipVolumes(dimPlex)

View File

@ -44,7 +44,6 @@ module mesh
mesh_ipCoordinates !< IP x,y,z coordinates (after deformation!)
!--------------------------------------------------------------------------------------------------
public :: &
mesh_init, &
mesh_FEasCP
@ -60,30 +59,17 @@ subroutine mesh_init(ip,el)
integer, intent(in) :: el, ip
integer, parameter :: FILEUNIT = 222
character(len=pStringLen), dimension(:), allocatable :: inputFile !< file content, separated per lines
integer :: &
mesh_NelemSets
real(pReal), dimension(:,:), allocatable :: &
node0_elem, & !< node x,y,z coordinates (initially!)
node0_cell
type(tElement) :: elem
integer :: j, fileFormatVersion, elemType, &
mesh_maxNelemInSet, &
mesh_nElems, &
hypoelasticTableStyle, &
initialcondTableStyle
integer, dimension(:), allocatable :: &
marc_matNumber !< array of material numbers for hypoelastic material (Marc only)
integer :: nElems
integer, dimension(:), allocatable :: &
microstructureAt, &
homogenizationAt
character(len=64), dimension(:), allocatable :: &
mesh_nameElemSet
integer, dimension(:,:), allocatable :: &
mesh_mapElemSet !< list of elements in elementSet
integer:: &
mesh_Nnodes !< total number of nodes in mesh
Nnodes !< total number of nodes in mesh
real(pReal), dimension(:,:), allocatable :: &
ip_reshaped
@ -91,89 +77,55 @@ subroutine mesh_init(ip,el)
connectivity_cell !< cell connectivity for each element,ip/cell
integer, dimension(:,:), allocatable :: &
connectivity_elem
type(tMesh) :: theMesh
real(pReal), dimension(:,:,:,:),allocatable :: &
unscaledNormals
write(6,'(/,a)') ' <<<+- mesh init -+>>>'
mesh_unitlength = numerics_unitlength ! set physical extent of a length unit in mesh
inputFile = IO_read_ASCII(trim(modelName)//trim(InputFileExtension))
! parsing Marc input file
fileFormatVersion = inputRead_fileFormat(inputFile)
call inputRead_tableStyles(initialcondTableStyle,hypoelasticTableStyle,inputFile)
if (fileFormatVersion > 12) &
marc_matNumber = inputRead_matNumber(hypoelasticTableStyle,inputFile)
call inputRead_NnodesAndElements(mesh_nNodes, mesh_nElems, inputFile)
call inputRead(elem,node0_elem,connectivity_elem,microstructureAt,homogenizationAt)
nElems = size(connectivity_elem,2)
call IO_open_inputFile(FILEUNIT,modelName)
call inputRead_NelemSets(mesh_NelemSets,mesh_maxNelemInSet,FILEUNIT)
allocate(mesh_nameElemSet(mesh_NelemSets)); mesh_nameElemSet = 'n/a'
allocate(mesh_mapElemSet(1+mesh_maxNelemInSet,mesh_NelemSets),source=0)
call inputRead_mapElemSets(mesh_nameElemSet,mesh_mapElemSet,FILEUNIT)
allocate (mesh_mapFEtoCPelem(2,mesh_nElems), source = 0)
call inputRead_mapElems(hypoelasticTableStyle,mesh_nameElemSet,mesh_mapElemSet,&
mesh_nElems,fileFormatVersion,marc_matNumber,FILEUNIT)
allocate (mesh_mapFEtoCPnode(2,mesh_Nnodes),source=0)
call inputRead_mapNodes(mesh_Nnodes,inputFile) !ToDo: don't work on global variables
if (debug_e < 1 .or. debug_e > nElems) call IO_error(602,ext_msg='element')
if (debug_i < 1 .or. debug_i > elem%nIPs) call IO_error(602,ext_msg='IP')
node0_elem = inputRead_elemNodes(mesh_Nnodes,inputFile)
FEsolving_execElem = [ 1,nElems ] ! parallel loop bounds set to comprise all DAMASK elements
allocate(FEsolving_execIP(2,nElems), source=1) ! parallel loop bounds set to comprise from first IP...
FEsolving_execIP(2,:) = elem%nIPs
allocate(calcMode(elem%nIPs,nElems),source=.false.) ! pretend to have collected what first call is asking (F = I)
calcMode(ip,mesh_FEasCP('elem',el)) = .true. ! first ip,el needs to be already pingponged to "calc"
elemType = inputRead_elemType(mesh_nElems,FILEUNIT)
allocate(mesh_ipCoordinates(3,elem%nIPs,nElems),source=0.0_pReal) ! deprecated
call theMesh%init('mesh',elemType,node0_elem)
call theMesh%setNelems(mesh_nElems)
allocate(microstructureAt(theMesh%nElems), source=0)
allocate(homogenizationAt(theMesh%nElems), source=0)
connectivity_elem = inputRead_connectivityElem(mesh_nElems,theMesh%elem%nNodes,FILEUNIT)
call inputRead_microstructureAndHomogenization(microstructureAt,homogenizationAt, &
mesh_nElems,theMesh%elem%nNodes,mesh_nameElemSet,mesh_mapElemSet,&
initialcondTableStyle,FILEUNIT)
close (FILEUNIT)
allocate(mesh_ipCoordinates(3,theMesh%elem%nIPs,theMesh%nElems),source=0.0_pReal)
allocate(cellNodeDefinition(theMesh%elem%nNodes-1))
allocate(connectivity_cell(theMesh%elem%NcellNodesPerCell,theMesh%elem%nIPs,theMesh%nElems))
allocate(cellNodeDefinition(elem%nNodes-1))
allocate(connectivity_cell(elem%NcellNodesPerCell,elem%nIPs,nElems))
call buildCells(connectivity_cell,cellNodeDefinition,&
theMesh%elem,connectivity_elem)
elem,connectivity_elem)
allocate(node0_cell(3,maxval(connectivity_cell)))
call buildCellNodes(node0_cell,&
cellNodeDefinition,node0_elem)
allocate(ip_reshaped(3,theMesh%elem%nIPs*theMesh%nElems),source=0.0_pReal)
call buildIPcoordinates(ip_reshaped,reshape(connectivity_cell,[theMesh%elem%NcellNodesPerCell,&
theMesh%elem%nIPs*theMesh%nElems]),node0_cell)
if (usePingPong .and. (mesh_Nelems /= theMesh%nElems)) &
call IO_error(600) ! ping-pong must be disabled when having non-DAMASK elements
if (debug_e < 1 .or. debug_e > theMesh%nElems) &
call IO_error(602,ext_msg='element') ! selected element does not exist
if (debug_i < 1 .or. debug_i > theMesh%elem%nIPs) &
call IO_error(602,ext_msg='IP') ! selected element does not have requested IP
FEsolving_execElem = [ 1,theMesh%nElems ] ! parallel loop bounds set to comprise all DAMASK elements
allocate(FEsolving_execIP(2,theMesh%nElems), source=1) ! parallel loop bounds set to comprise from first IP...
FEsolving_execIP(2,:) = theMesh%elem%nIPs
allocate(calcMode(theMesh%elem%nIPs,theMesh%nElems))
calcMode = .false. ! pretend to have collected what first call is asking (F = I)
calcMode(ip,mesh_FEasCP('elem',el)) = .true. ! first ip,el needs to be already pingponged to "calc"
allocate(ip_reshaped(3,elem%nIPs*nElems),source=0.0_pReal)
call buildIPcoordinates(ip_reshaped,reshape(connectivity_cell,[elem%NcellNodesPerCell,&
elem%nIPs*nElems]),node0_cell)
call discretization_init(microstructureAt,homogenizationAt,&
ip_reshaped,&
node0_elem)
call writeGeometry(0,connectivity_elem,&
reshape(connectivity_cell,[theMesh%elem%NcellNodesPerCell,theMesh%elem%nIPs*theMesh%nElems]),&
reshape(connectivity_cell,[elem%NcellNodesPerCell,elem%nIPs*nElems]),&
node0_cell,ip_reshaped)
call geometry_plastic_nonlocal_setIPvolume(IPvolume(elem,node0_cell,connectivity_cell))
unscaledNormals = IPareaNormal(elem,nElems,connectivity_cell,node0_cell)
call geometry_plastic_nonlocal_setIParea(norm2(unscaledNormals,1))
call geometry_plastic_nonlocal_setIPareaNormal(unscaledNormals/spread(norm2(unscaledNormals,1),1,3))
call geometry_plastic_nonlocal_results
end subroutine mesh_init
!--------------------------------------------------------------------------------------------------
@ -216,17 +168,85 @@ subroutine writeGeometry(elemType, &
call results_writeDataset('geometry',coordinates_temp,'x_p', &
'coordinates of the material points','m')
call results_closeJobFile()
call results_closeJobFile
#endif
end subroutine writeGeometry
subroutine inputRead(elem,node0_elem,connectivity_elem,microstructureAt,homogenizationAt)
type(tElement), intent(out) :: elem
real(pReal), dimension(:,:), allocatable, intent(out) :: &
node0_elem !< node x,y,z coordinates (initially!)
integer, dimension(:,:), allocatable, intent(out) :: &
connectivity_elem
integer, dimension(:), allocatable, intent(out) :: &
microstructureAt, &
homogenizationAt
integer :: &
fileFormatVersion, &
hypoelasticTableStyle, &
initialcondTableStyle, &
nNodes, &
nElems
integer, parameter :: &
FILEUNIT = 222
integer, dimension(:), allocatable :: &
matNumber !< material numbers for hypoelastic material
character(len=pStringLen), dimension(:), allocatable :: inputFile !< file content, separated per lines
character(len=64), dimension(:), allocatable :: &
nameElemSet
integer, dimension(:,:), allocatable :: &
mapElemSet !< list of elements in elementSet
inputFile = IO_read_ASCII(trim(modelName)//trim(InputFileExtension))
call inputRead_fileFormat(fileFormatVersion, &
inputFile)
call inputRead_tableStyles(initialcondTableStyle,hypoelasticTableStyle, &
inputFile)
if (fileFormatVersion > 12) &
call inputRead_matNumber(matNumber, &
hypoelasticTableStyle,inputFile)
call inputRead_NnodesAndElements(nNodes,nElems,&
inputFile)
call IO_open_inputFile(FILEUNIT,modelName) ! ToDo: It would be better to use fileContent
call inputRead_mapElemSets(nameElemSet,mapElemSet,&
FILEUNIT)
allocate (mesh_mapFEtoCPelem(2,nElems), source=0)
call inputRead_mapElems(hypoelasticTableStyle,nameElemSet,mapElemSet,fileFormatVersion,matNumber,FILEUNIT)
allocate (mesh_mapFEtoCPnode(2,Nnodes), source=0)
call inputRead_mapNodes(inputFile)
call inputRead_elemType(elem, &
nElems,inputFile)
call inputRead_elemNodes(node0_elem, &
Nnodes,inputFile)
connectivity_elem = inputRead_connectivityElem(nElems,elem%nNodes,inputFile)
call inputRead_microstructureAndHomogenization(microstructureAt,homogenizationAt, &
nElems,elem%nNodes,nameElemSet,mapElemSet,&
initialcondTableStyle,FILEUNIT)
close(FILEUNIT)
end subroutine inputRead
!--------------------------------------------------------------------------------------------------
!> @brief Figures out version of Marc input file format
!--------------------------------------------------------------------------------------------------
integer function inputRead_fileFormat(fileContent)
subroutine inputRead_fileFormat(fileFormat,fileContent)
integer, intent(out) :: fileFormat
character(len=pStringLen), dimension(:), intent(in) :: fileContent !< file content, separated per lines
integer, allocatable, dimension(:) :: chunkPos
@ -235,12 +255,12 @@ integer function inputRead_fileFormat(fileContent)
do l = 1, size(fileContent)
chunkPos = IO_stringPos(fileContent(l))
if ( IO_lc(IO_stringValue(fileContent(l),chunkPos,1)) == 'version') then
inputRead_fileFormat = IO_intValue(fileContent(l),chunkPos,2)
fileFormat = IO_intValue(fileContent(l),chunkPos,2)
exit
endif
enddo
end function inputRead_fileFormat
end subroutine inputRead_fileFormat
!--------------------------------------------------------------------------------------------------
@ -272,12 +292,13 @@ end subroutine inputRead_tableStyles
!--------------------------------------------------------------------------------------------------
!> @brief Figures out material number of hypoelastic material
!--------------------------------------------------------------------------------------------------
function inputRead_matNumber(tableStyle,fileContent)
subroutine inputRead_matNumber(matNumber, &
tableStyle,fileContent)
integer, allocatable, dimension(:), intent(out) :: matNumber
integer, intent(in) :: tableStyle
character(len=pStringLen), dimension(:), intent(in) :: fileContent !< file content, separated per lines
integer, dimension(:), allocatable :: inputRead_matNumber
integer, allocatable, dimension(:) :: chunkPos
integer :: i, j, data_blocks, l
@ -291,17 +312,17 @@ function inputRead_matNumber(tableStyle,fileContent)
else
data_blocks = 1
endif
allocate(inputRead_matNumber(data_blocks), source = 0)
allocate(matNumber(data_blocks), source = 0)
do i = 0, data_blocks - 1
j = i*(2+tableStyle) + 1
chunkPos = IO_stringPos(fileContent(l+1+j))
inputRead_matNumber(i+1) = IO_intValue(fileContent(l+1+j),chunkPos,1)
matNumber(i+1) = IO_intValue(fileContent(l+1+j),chunkPos,1)
enddo
exit
endif
enddo
end function inputRead_matNumber
end subroutine inputRead_matNumber
!--------------------------------------------------------------------------------------------------
@ -367,14 +388,18 @@ subroutine inputRead_NelemSets(nElemSets,maxNelemInSet,&
!--------------------------------------------------------------------------------------------------
subroutine inputRead_mapElemSets(nameElemSet,mapElemSet,fileUnit)
character(len=64), dimension(:), intent(out) :: nameElemSet
integer, dimension(:,:), intent(out) :: mapElemSet
character(len=64), dimension(:), allocatable, intent(out) :: nameElemSet
integer, dimension(:,:), allocatable, intent(out) :: mapElemSet
integer, intent(in) :: fileUnit
integer, allocatable, dimension(:) :: chunkPos
character(len=300) :: line
integer :: elemSet
integer :: elemSet, NelemSets, maxNelemInSet
call inputRead_NelemSets(NelemSets,maxNelemInSet,fileUnit)
allocate(nameElemSet(NelemSets)); nameElemSet = 'n/a'
allocate(mapElemSet(1+maxNelemInSet,NelemSets),source=0)
elemSet = 0
rewind(fileUnit)
@ -396,9 +421,9 @@ subroutine inputRead_mapElemSets(nameElemSet,mapElemSet,fileUnit)
!--------------------------------------------------------------------------------------------------
!> @brief Maps elements from FE ID to internal (consecutive) representation.
!--------------------------------------------------------------------------------------------------
subroutine inputRead_mapElems(tableStyle,nameElemSet,mapElemSet,nElems,fileFormatVersion,matNumber,fileUnit)
subroutine inputRead_mapElems(tableStyle,nameElemSet,mapElemSet,fileFormatVersion,matNumber,fileUnit)
integer, intent(in) :: fileUnit,tableStyle,nElems,fileFormatVersion
integer, intent(in) :: fileUnit,tableStyle,fileFormatVersion
integer, dimension(:), intent(in) :: matNumber
character(len=64), intent(in), dimension(:) :: nameElemSet
integer, dimension(:,:), intent(in) :: &
@ -408,25 +433,27 @@ subroutine inputRead_mapElems(tableStyle,nameElemSet,mapElemSet,nElems,fileForma
character(len=300) :: line, &
tmp
integer, dimension (1+nElems) :: contInts
integer, dimension(:), allocatable :: contInts
integer :: i,cpElem
allocate(contInts(size(mesh_mapFEtoCPelem,2)+1))
cpElem = 0
contInts = 0
rewind(fileUnit)
do
read (fileUnit,'(A300)',END=620) line
chunkPos = IO_stringPos(line)
if (fileFormatVersion < 13) then ! Marc 2016 or earlier
Marc2016andEarlier: if (fileFormatVersion < 13) then
if( IO_lc(IO_stringValue(line,chunkPos,1)) == 'hypoelastic' ) then
do i=1,3+TableStyle ! skip three (or four if new table style!) lines
skipLines: do i=1,3+TableStyle
read (fileUnit,'(A300)') line
enddo
contInts = IO_continuousIntValues(fileUnit,nElems,nameElemSet,&
enddo skipLines
contInts = IO_continuousIntValues(fileUnit,size(mesh_mapFEtoCPelem,2),nameElemSet,&
mapElemSet,size(nameElemSet))
exit
endif
else ! Marc2017 and later
else Marc2016andEarlier
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == 'connectivity') then
read (fileUnit,'(A300)',END=620) line
chunkPos = IO_stringPos(line)
@ -444,7 +471,7 @@ subroutine inputRead_mapElems(tableStyle,nameElemSet,mapElemSet,nElems,fileForma
enddo
endif
endif
endif
endif Marc2016andEarlier
enddo
620 do i = 1,contInts(1)
cpElem = cpElem+1
@ -460,9 +487,8 @@ end subroutine inputRead_mapElems
!--------------------------------------------------------------------------------------------------
!> @brief Maps node from FE ID to internal (consecutive) representation.
!--------------------------------------------------------------------------------------------------
subroutine inputRead_mapNodes(nNodes,fileContent)
subroutine inputRead_mapNodes(fileContent)
integer, intent(in) :: nNodes
character(len=pStringLen), dimension(:), intent(in) :: fileContent !< file content, separated per lines
integer, allocatable, dimension(:) :: chunkPos
@ -471,7 +497,7 @@ subroutine inputRead_mapNodes(nNodes,fileContent)
do l = 1, size(fileContent)
chunkPos = IO_stringPos(fileContent(l))
if( IO_lc(IO_stringValue(fileContent(l),chunkPos,1)) == 'coordinates' ) then
do i = 1,nNodes
do i = 1,size(mesh_mapFEtoCPnode,2)
mesh_mapFEtoCPnode(1,i) = IO_fixedIntValue (fileContent(l+1+i),[0,10],1)
mesh_mapFEtoCPnode(2,i) = i
enddo
@ -487,16 +513,19 @@ end subroutine inputRead_mapNodes
!--------------------------------------------------------------------------------------------------
!> @brief store x,y,z coordinates of all nodes in mesh.
!--------------------------------------------------------------------------------------------------
function inputRead_elemNodes(nNode,fileContent) result(nodes)
subroutine inputRead_elemNodes(nodes, &
nNode,fileContent)
real(pReal), allocatable, dimension(:,:), intent(out) :: nodes
integer, intent(in) :: nNode
character(len=pStringLen), dimension(:), intent(in) :: fileContent !< file content, separated per lines
real(pReal), dimension(3,nNode) :: nodes
integer, dimension(5), parameter :: node_ends = [0,10,30,50,70]
integer, allocatable, dimension(:) :: chunkPos
integer :: i,j,m,l
allocate(nodes(3,nNode))
do l = 1, size(fileContent)
chunkPos = IO_stringPos(fileContent(l))
if( IO_lc(IO_stringValue(fileContent(l),chunkPos,1)) == 'coordinates' ) then
@ -510,42 +539,41 @@ function inputRead_elemNodes(nNode,fileContent) result(nodes)
endif
enddo
end function inputRead_elemNodes
end subroutine inputRead_elemNodes
!--------------------------------------------------------------------------------------------------
!> @brief Gets element type (and checks if the whole mesh comprises of only one type)
!--------------------------------------------------------------------------------------------------
integer function inputRead_elemType(nElem,fileUnit)
subroutine inputRead_elemType(elem, &
nElem,fileContent)
integer, intent(in) :: &
nElem, &
fileUnit
type(tElement), intent(out) :: elem
integer, intent(in) :: nElem
character(len=pStringLen), dimension(:), intent(in) :: fileContent !< file content, separated per lines
type(tElement) :: tempEl
integer, allocatable, dimension(:) :: chunkPos
character(len=300) :: line
integer :: i,t
integer :: i,j,t,l,remainingChunks
t = -1
rewind(fileUnit)
do
read (fileUnit,'(A300)',END=620) line
chunkPos = IO_stringPos(line)
if( IO_lc(IO_stringValue(line,chunkPos,1)) == 'connectivity' ) then
read (fileUnit,'(A300)') line ! Garbage line
do l = 1, size(fileContent)
chunkPos = IO_stringPos(fileContent(l))
if( IO_lc(IO_stringValue(fileContent(l),chunkPos,1)) == 'connectivity' ) then
j = 0
do i=1,nElem ! read all elements
read (fileUnit,'(A300)') line
chunkPos = IO_stringPos(line)
chunkPos = IO_stringPos(fileContent(l+1+i+j))
if (t == -1) then
t = mapElemtype(IO_stringValue(line,chunkPos,2))
call tempEl%init(t)
inputRead_elemType = t
t = mapElemtype(IO_stringValue(fileContent(l+1+i+j),chunkPos,2))
call elem%init(t)
else
if (t /= mapElemtype(IO_stringValue(line,chunkPos,2))) call IO_error(191,el=t,ip=i)
if (t /= mapElemtype(IO_stringValue(fileContent(l+1+i+j),chunkPos,2))) call IO_error(191,el=t,ip=i)
endif
call IO_skipChunks(fileUnit,tempEl%nNodes-(chunkPos(1)-2))
remainingChunks = elem%nNodes - (chunkPos(1) - 2)
do while(remainingChunks > 0)
j = j + 1
chunkPos = IO_stringPos(fileContent(l+1+i+j))
remainingChunks = remainingChunks - chunkPos(1)
enddo
enddo
exit
endif
@ -594,54 +622,49 @@ integer function inputRead_elemType(nElem,fileUnit)
call IO_error(error_ID=190,ext_msg=IO_lc(what))
end select
end function mapElemtype
end function mapElemtype
620 end function inputRead_elemType
end subroutine inputRead_elemType
!--------------------------------------------------------------------------------------------------
!> @brief Stores node IDs
!--------------------------------------------------------------------------------------------------
function inputRead_connectivityElem(nElem,nNodes,fileUnit)
function inputRead_connectivityElem(nElem,nNodes,fileContent)
integer, intent(in) :: &
nElem, &
nNodes, & !< number of nodes per element
fileUnit
nNodes !< number of nodes per element
character(len=pStringLen), dimension(:), intent(in) :: fileContent !< file content, separated per lines
integer, dimension(nNodes,nElem) :: &
inputRead_connectivityElem
integer, allocatable, dimension(:) :: chunkPos
character(len=300) line
integer, dimension(1+nElem) :: contInts
integer :: i,j,t,sv,myVal,e,nNodesAlreadyRead
integer :: i,k,j,t,e,l,nNodesAlreadyRead
rewind(fileUnit)
do
read (fileUnit,'(A300)',END=620) line
chunkPos = IO_stringPos(line)
if( IO_lc(IO_stringValue(line,chunkPos,1)) == 'connectivity' ) then
read (fileUnit,'(A300)',END=620) line ! garbage line
do l = 1, size(fileContent)
chunkPos = IO_stringPos(fileContent(l))
if( IO_lc(IO_stringValue(fileContent(l),chunkPos,1)) == 'connectivity' ) then
j = 0
do i = 1,nElem
read (fileUnit,'(A300)',END=620) line
chunkPos = IO_stringPos(line)
e = mesh_FEasCP('elem',IO_intValue(line,chunkPos,1))
chunkPos = IO_stringPos(fileContent(l+1+i+j))
e = mesh_FEasCP('elem',IO_intValue(fileContent(l+1+i+j),chunkPos,1))
if (e /= 0) then ! disregard non CP elems
nNodesAlreadyRead = 0
do j = 1,chunkPos(1)-2
inputRead_connectivityElem(j,e) = &
mesh_FEasCP('node',IO_IntValue(line,chunkPos,j+2))
do k = 1,chunkPos(1)-2
inputRead_connectivityElem(k,e) = &
mesh_FEasCP('node',IO_IntValue(fileContent(l+1+i+j),chunkPos,k+2))
enddo
nNodesAlreadyRead = chunkPos(1) - 2
do while(nNodesAlreadyRead < nNodes) ! read on if not all nodes in one line
read (fileUnit,'(A300)',END=620) line
chunkPos = IO_stringPos(line)
do j = 1,chunkPos(1)
inputRead_connectivityElem(nNodesAlreadyRead+j,e) = &
mesh_FEasCP('node',IO_IntValue(line,chunkPos,j))
j = j + 1
chunkPos = IO_stringPos(fileContent(l+1+i+j))
do k = 1,chunkPos(1)
inputRead_connectivityElem(nNodesAlreadyRead+k,e) = &
mesh_FEasCP('node',IO_IntValue(fileContent(l+1+i+j),chunkPos,k))
enddo
nNodesAlreadyRead = nNodesAlreadyRead + chunkPos(1)
enddo
@ -651,7 +674,7 @@ function inputRead_connectivityElem(nElem,nNodes,fileUnit)
endif
enddo
620 end function inputRead_connectivityElem
end function inputRead_connectivityElem
!--------------------------------------------------------------------------------------------------
@ -660,7 +683,7 @@ function inputRead_connectivityElem(nElem,nNodes,fileUnit)
subroutine inputRead_microstructureAndHomogenization(microstructureAt,homogenizationAt, &
nElem,nNodes,nameElemSet,mapElemSet,initialcondTableStyle,fileUnit)
integer, dimension(:), intent(out) :: &
integer, dimension(:), allocatable, intent(out) :: &
microstructureAt, &
homogenizationAt
integer, intent(in) :: &
@ -679,6 +702,10 @@ subroutine inputRead_microstructureAndHomogenization(microstructureAt,homogeniza
integer, dimension(1+nElem) :: contInts
integer :: i,j,t,sv,myVal,e,nNodesAlreadyRead
allocate(microstructureAt(nElem),source=0)
allocate(homogenizationAt(nElem),source=0)
rewind(fileUnit)
read (fileUnit,'(A300)',END=630) line
do
@ -718,7 +745,6 @@ subroutine inputRead_microstructureAndHomogenization(microstructureAt,homogeniza
630 end subroutine inputRead_microstructureAndHomogenization
!--------------------------------------------------------------------------------------------------
!> @brief Calculates cell node coordinates from element node coordinates
!--------------------------------------------------------------------------------------------------
@ -930,6 +956,115 @@ subroutine buildIPcoordinates(IPcoordinates, &
end subroutine buildIPcoordinates
!---------------------------------------------------------------------------------------------------
!> @brief Calculates IP volume.
!> @details The IP volume is calculated differently depending on the cell type.
!> 2D cells assume an element depth of 1.0
!---------------------------------------------------------------------------------------------------
function IPvolume(elem,node,connectivity)
type(tElement), intent(in) :: elem
real(pReal), dimension(:,:), intent(in) :: node
integer, dimension(:,:,:), intent(in) :: connectivity
real(pReal), dimension(elem%nIPs,size(connectivity,3)) :: IPvolume
real(pReal), dimension(3) :: x0,x1,x2,x3,x4,x5,x6,x7
integer :: e,i
do e = 1,size(connectivity,3)
do i = 1,elem%nIPs
select case (elem%cellType)
case (1) ! 2D 3node
IPvolume(i,e) = math_areaTriangle(node(1:3,connectivity(1,i,e)), &
node(1:3,connectivity(2,i,e)), &
node(1:3,connectivity(3,i,e)))
case (2) ! 2D 4node
IPvolume(i,e) = math_areaTriangle(node(1:3,connectivity(1,i,e)), & ! assume planar shape, division in two triangles suffices
node(1:3,connectivity(2,i,e)), &
node(1:3,connectivity(3,i,e))) &
+ math_areaTriangle(node(1:3,connectivity(3,i,e)), &
node(1:3,connectivity(4,i,e)), &
node(1:3,connectivity(1,i,e)))
case (3) ! 3D 4node
IPvolume(i,e) = math_volTetrahedron(node(1:3,connectivity(1,i,e)), &
node(1:3,connectivity(2,i,e)), &
node(1:3,connectivity(3,i,e)), &
node(1:3,connectivity(4,i,e)))
case (4) ! 3D 8node
! J. Grandy, Efficient Calculation of Volume of Hexahedral Cells
! Lawrence Livermore National Laboratory
! https://www.osti.gov/servlets/purl/632793
x0 = node(1:3,connectivity(1,i,e))
x1 = node(1:3,connectivity(2,i,e))
x2 = node(1:3,connectivity(4,i,e))
x3 = node(1:3,connectivity(3,i,e))
x4 = node(1:3,connectivity(5,i,e))
x5 = node(1:3,connectivity(6,i,e))
x6 = node(1:3,connectivity(8,i,e))
x7 = node(1:3,connectivity(7,i,e))
IPvolume(i,e) = dot_product((x7-x1)+(x6-x0),math_cross((x7-x2), (x3-x0))) &
+ dot_product((x6-x0), math_cross((x7-x2)+(x5-x0),(x7-x4))) &
+ dot_product((x7-x1), math_cross((x5-x0), (x7-x4)+(x3-x0)))
IPvolume(i,e) = IPvolume(i,e)/12.0_pReal
end select
enddo
enddo
end function IPvolume
!--------------------------------------------------------------------------------------------------
!> @brief calculation of IP interface areas
!--------------------------------------------------------------------------------------------------
function IPareaNormal(elem,nElem,connectivity,node)
type(tElement), intent(in) :: elem
integer, intent(in) :: nElem
integer, dimension(:,:,:), intent(in) :: connectivity
real(pReal), dimension(:,:), intent(in) :: node
real(pReal), dimension(3,elem%nIPneighbors,elem%nIPs,nElem) :: ipAreaNormal
real(pReal), dimension (3,size(elem%cellFace,1)) :: nodePos
integer :: e,i,f,n,m
m = size(elem%cellFace,1)
do e = 1,nElem
do i = 1,elem%nIPs
do f = 1,elem%nIPneighbors
nodePos = node(1:3,connectivity(elem%cellface(1:m,f),i,e))
select case (elem%cellType)
case (1,2) ! 2D 3 or 4 node
IPareaNormal(1,f,i,e) = nodePos(2,2) - nodePos(2,1) ! x_normal = y_connectingVector
IPareaNormal(2,f,i,e) = -(nodePos(1,2) - nodePos(1,1)) ! y_normal = -x_connectingVector
IPareaNormal(3,f,i,e) = 0.0_pReal
case (3) ! 3D 4node
IPareaNormal(1:3,f,i,e) = math_cross(nodePos(1:3,2) - nodePos(1:3,1), &
nodePos(1:3,3) - nodePos(1:3,1))
case (4) ! 3D 8node
! for this cell type we get the normal of the quadrilateral face as an average of
! four normals of triangular subfaces; since the face consists only of two triangles,
! the sum has to be divided by two; this whole prcedure tries to compensate for
! probable non-planar cell surfaces
IPareaNormal(1:3,f,i,e) = 0.0_pReal
do n = 1, m
IPareaNormal(1:3,f,i,e) = IPareaNormal(1:3,f,i,e) &
+ math_cross(nodePos(1:3,mod(n+0,m)+1) - nodePos(1:3,n), &
nodePos(1:3,mod(n+1,m)+1) - nodePos(1:3,n)) * 0.5_pReal
enddo
end select
enddo
enddo
enddo
end function IPareaNormal
!--------------------------------------------------------------------------------------------------
!> @brief Gives the FE to CP ID mapping by binary search through lookup array
!! valid questions (what) are 'elem', 'node'

View File

@ -296,21 +296,34 @@ end subroutine results_writeVectorDataset_real
!--------------------------------------------------------------------------------------------------
!> @brief stores a tensor dataset in a group
!--------------------------------------------------------------------------------------------------
subroutine results_writeTensorDataset_real(group,dataset,label,description,SIunit)
subroutine results_writeTensorDataset_real(group,dataset,label,description,SIunit,transposed)
character(len=*), intent(in) :: label,group,description
character(len=*), intent(in), optional :: SIunit
logical, intent(in), optional :: transposed
real(pReal), intent(in), dimension(:,:,:) :: dataset
integer :: i
logical :: T
integer(HID_T) :: groupHandle
real(pReal), dimension(:,:,:), allocatable :: dataset_transposed
if(present(transposed)) then
T = transposed
else
T = .true.
endif
if(T) then
if(size(dataset,1) /= size(dataset,2)) call IO_error(0,ext_msg='transpose non-symmetric tensor')
allocate(dataset_transposed,mold=dataset)
do i=1,size(dataset,3)
dataset_transposed(1:3,1:3,i) = transpose(dataset(1:3,1:3,i))
do i=1,size(dataset_transposed,3)
dataset_transposed(:,:,i) = transpose(dataset(:,:,i))
enddo
else
allocate(dataset_transposed,source=dataset)
endif
groupHandle = results_openGroup(group)