von Mises fitting seems to work, still needs polishing (adding options etc)
This commit is contained in:
parent
5f638a059a
commit
fd2164b391
|
@ -4,10 +4,13 @@
|
|||
import numpy as np
|
||||
from scipy.optimize import curve_fit
|
||||
from scipy.linalg import svd
|
||||
import threading,time,os,subprocess,shlex
|
||||
import threading,time,os,subprocess,shlex,string
|
||||
import damask
|
||||
from optparse import OptionParser
|
||||
scriptID='aa'
|
||||
|
||||
geomName='20grains16x16x16'
|
||||
popt1=np.ones(6,'d')
|
||||
popt1=[np.ones(1,'d'),np.ones(6,'d')]
|
||||
|
||||
def execute(cmd,dir='./'):
|
||||
|
||||
|
@ -28,16 +31,16 @@ def asFullTensor(voigt):
|
|||
def Hill48(x, F,G,H,L,M,N):
|
||||
a = F*(x[1]-x[2])**2 + G*(x[2]-x[0])**2 + H*(x[0]-x[1])** + \
|
||||
2*L*x[4]**2 + 2*M*x[5]**2 + 2*N*x[3]**2 -1.
|
||||
return a.ravel() * 1000.0
|
||||
return a.ravel()
|
||||
|
||||
def vonMises(x, S_y):
|
||||
sv=np.zeros(0,'d')
|
||||
for i in xrange(np.shape(x)[0]):
|
||||
U, l, Vh = svd(np.array(x[i,:]).reshape(3,3))
|
||||
for i in xrange(np.shape(x)[1]):
|
||||
U, l, Vh = svd(np.array(x[:,i]).reshape(3,3))
|
||||
sv = np.append(sv,l)
|
||||
sv = sv.reshape(np.shape(x)[0],3)
|
||||
sv = sv.reshape(np.shape(x)[1],3)
|
||||
ooo = (sv[:,2]-sv[:,1])**2+(sv[:,1]-sv[:,0])**2+(sv[:,0]-sv[:,2])**2-2*S_y**2
|
||||
return ooo
|
||||
return ooo.ravel()
|
||||
|
||||
#---------------------------------------------------------------------------------------------------
|
||||
class Loadcase():
|
||||
|
@ -47,13 +50,16 @@ class Loadcase():
|
|||
'''
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
def __init__(self):
|
||||
def __init__(self,finalStrain,incs,time):
|
||||
print('using the random load case generator')
|
||||
self.finalStrain = finalStrain
|
||||
self.incs = incs
|
||||
self.time = time
|
||||
|
||||
def getNext(self,N=0):
|
||||
def getLoadcase(self,N=0):
|
||||
defgrad=['*']*9
|
||||
stress =[0]*9
|
||||
values=(np.random.random_sample(9)-.5)*scale*2
|
||||
values=(np.random.random_sample(9)-.5)*self.finalStrain*2
|
||||
|
||||
main=np.array([0,4,8])
|
||||
np.random.shuffle(main)
|
||||
|
@ -70,8 +76,8 @@ class Loadcase():
|
|||
|
||||
return 'f '+' '.join(str(c) for c in defgrad)+\
|
||||
' p '+' '.join(str(c) for c in stress)+\
|
||||
' incs %s'%incs+\
|
||||
' time %s'%duration
|
||||
' incs %s'%self.incs+\
|
||||
' time %s'%self.time
|
||||
|
||||
#---------------------------------------------------------------------------------------------------
|
||||
class Criterion(object):
|
||||
|
@ -83,19 +89,21 @@ class Criterion(object):
|
|||
self.name = name.lower()
|
||||
if self.name not in ['hill48','vonmises']: print('Mist')
|
||||
print('using the %s criterion'%self.name)
|
||||
self.popt = 0.0
|
||||
|
||||
def fit(self,stress):
|
||||
global popt1
|
||||
try:
|
||||
spopt1, pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[1]),p0=popt1,xtol=1e-30)
|
||||
popt = popt1
|
||||
print 'Hill 48', popt
|
||||
print Hill48(stress,popt[0],popt[1],popt[2],popt[3],popt[4],popt[5])
|
||||
popt1[0], pcov = curve_fit(vonMises, stress, np.zeros(np.shape(stress)[1]),p0=popt1[0])
|
||||
print 'Mises', popt1[0], pcov
|
||||
except Exception as detail:
|
||||
print detail
|
||||
pass
|
||||
try:
|
||||
popt1[1], pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[1]),p0=popt1[1])
|
||||
print 'Hill48', popt1[1], pcov
|
||||
except Exception as detail:
|
||||
print detail
|
||||
pass
|
||||
#popt, pcov = curve_fit(vonMises, stress, np.zeros(np.shape(stress)[0]))
|
||||
#print 'von Mises', popt
|
||||
|
||||
|
||||
#---------------------------------------------------------------------------------------------------
|
||||
|
@ -159,14 +167,12 @@ def doSim(delay,thread):
|
|||
if l not in table.labels: print '%s not found'%l
|
||||
while table.data_read():
|
||||
if float(table.data[table.labels.index('Mises(ln(V))')]) > 0.002:
|
||||
yieldStress = np.array(table.data[table.labels.index('1_Cauchy'):table.labels.index('9_Cauchy')+1],'d')
|
||||
yieldStress = np.array(table.data[table.labels.index('1_Cauchy'):table.labels.index('9_Cauchy')+1],'d')/10.e8
|
||||
|
||||
s.acquire()
|
||||
print('starting fitting for sim %i from %s'%(me,thread))
|
||||
global stressAll
|
||||
stressAll=np.append(yieldStress,stressAll)
|
||||
for i in range(np.shape(stressAll.reshape(len(stressAll)//9,9).transpose())[1]):
|
||||
print i, stressAll.reshape(len(stressAll)//9,9).transpose()[:,i]
|
||||
myFit.fit(stressAll.reshape(len(stressAll)//9,9).transpose())
|
||||
s.release()
|
||||
|
||||
|
@ -183,19 +189,41 @@ def converged():
|
|||
else:
|
||||
return True
|
||||
|
||||
# main
|
||||
# --------------------------------------------------------------------
|
||||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
|
||||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||||
Add column(s) with derived values according to user defined arithmetic operation between column(s).
|
||||
Columns can be specified either by label or index. Use ';' for ',' in functions.
|
||||
|
||||
Example: distance to IP coordinates -- "math.sqrt( #ip.x#**2 + #ip.y#**2 + round(#ip.z#;3)**2 )"
|
||||
""", version=string.replace(scriptID,'\n','\\n')
|
||||
)
|
||||
|
||||
parser.add_option('--labelnodalcoords', dest='nodalcoords', type='string', nargs=3, \
|
||||
help='labels of nodal coords in ASCII table')
|
||||
|
||||
parser.add_option('-l','--load' , dest='load', type='float', nargs=3, \
|
||||
help='load: final strain; increments; time', metavar='float int float')
|
||||
parser.add_option('-g','--geometry', dest='formulas', action='extend', type='string', \
|
||||
help='(list of) formulas corresponding to labels', metavar='<LIST>')
|
||||
parser.add_option('-c','--criterion',dest='formulas', action='extend', type='string', \
|
||||
help='(list of) formulas corresponding to labels', metavar='<LIST>')
|
||||
parser.set_defaults(load = [0.005,20,20.0])
|
||||
parser.set_defaults(formulas= [])
|
||||
|
||||
options = parser.parse_args()[0]
|
||||
|
||||
minN_simulations=20
|
||||
maxN_simulations=14
|
||||
maxN_simulations=40
|
||||
N_simulations=0
|
||||
s=threading.Semaphore(1)
|
||||
scale = 0.02
|
||||
incs = 10
|
||||
duration = 10
|
||||
stressAll=np.zeros(0,'d').reshape(0,0)
|
||||
|
||||
myLoad = Loadcase()
|
||||
myFit = Criterion('Hill48')
|
||||
myLoad = Loadcase(options.load[0],options.load[1],options.load[2])
|
||||
myFit = Criterion('vonmises')
|
||||
|
||||
N_threads=3
|
||||
t=[]
|
||||
|
|
Loading…
Reference in New Issue