von Mises fitting seems to work, still needs polishing (adding options etc)

This commit is contained in:
Martin Diehl 2014-07-09 09:31:26 +00:00
parent 5f638a059a
commit fd2164b391
1 changed files with 58 additions and 30 deletions

View File

@ -4,10 +4,13 @@
import numpy as np import numpy as np
from scipy.optimize import curve_fit from scipy.optimize import curve_fit
from scipy.linalg import svd from scipy.linalg import svd
import threading,time,os,subprocess,shlex import threading,time,os,subprocess,shlex,string
import damask import damask
from optparse import OptionParser
scriptID='aa'
geomName='20grains16x16x16' geomName='20grains16x16x16'
popt1=np.ones(6,'d') popt1=[np.ones(1,'d'),np.ones(6,'d')]
def execute(cmd,dir='./'): def execute(cmd,dir='./'):
@ -28,16 +31,16 @@ def asFullTensor(voigt):
def Hill48(x, F,G,H,L,M,N): def Hill48(x, F,G,H,L,M,N):
a = F*(x[1]-x[2])**2 + G*(x[2]-x[0])**2 + H*(x[0]-x[1])** + \ a = F*(x[1]-x[2])**2 + G*(x[2]-x[0])**2 + H*(x[0]-x[1])** + \
2*L*x[4]**2 + 2*M*x[5]**2 + 2*N*x[3]**2 -1. 2*L*x[4]**2 + 2*M*x[5]**2 + 2*N*x[3]**2 -1.
return a.ravel() * 1000.0 return a.ravel()
def vonMises(x, S_y): def vonMises(x, S_y):
sv=np.zeros(0,'d') sv=np.zeros(0,'d')
for i in xrange(np.shape(x)[0]): for i in xrange(np.shape(x)[1]):
U, l, Vh = svd(np.array(x[i,:]).reshape(3,3)) U, l, Vh = svd(np.array(x[:,i]).reshape(3,3))
sv = np.append(sv,l) sv = np.append(sv,l)
sv = sv.reshape(np.shape(x)[0],3) sv = sv.reshape(np.shape(x)[1],3)
ooo = (sv[:,2]-sv[:,1])**2+(sv[:,1]-sv[:,0])**2+(sv[:,0]-sv[:,2])**2-2*S_y**2 ooo = (sv[:,2]-sv[:,1])**2+(sv[:,1]-sv[:,0])**2+(sv[:,0]-sv[:,2])**2-2*S_y**2
return ooo return ooo.ravel()
#--------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------------------------------------
class Loadcase(): class Loadcase():
@ -47,13 +50,16 @@ class Loadcase():
''' '''
# ------------------------------------------------------------------ # ------------------------------------------------------------------
def __init__(self): def __init__(self,finalStrain,incs,time):
print('using the random load case generator') print('using the random load case generator')
self.finalStrain = finalStrain
self.incs = incs
self.time = time
def getNext(self,N=0): def getLoadcase(self,N=0):
defgrad=['*']*9 defgrad=['*']*9
stress =[0]*9 stress =[0]*9
values=(np.random.random_sample(9)-.5)*scale*2 values=(np.random.random_sample(9)-.5)*self.finalStrain*2
main=np.array([0,4,8]) main=np.array([0,4,8])
np.random.shuffle(main) np.random.shuffle(main)
@ -70,8 +76,8 @@ class Loadcase():
return 'f '+' '.join(str(c) for c in defgrad)+\ return 'f '+' '.join(str(c) for c in defgrad)+\
' p '+' '.join(str(c) for c in stress)+\ ' p '+' '.join(str(c) for c in stress)+\
' incs %s'%incs+\ ' incs %s'%self.incs+\
' time %s'%duration ' time %s'%self.time
#--------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------------------------------------
class Criterion(object): class Criterion(object):
@ -83,19 +89,21 @@ class Criterion(object):
self.name = name.lower() self.name = name.lower()
if self.name not in ['hill48','vonmises']: print('Mist') if self.name not in ['hill48','vonmises']: print('Mist')
print('using the %s criterion'%self.name) print('using the %s criterion'%self.name)
self.popt = 0.0
def fit(self,stress): def fit(self,stress):
global popt1
try: try:
spopt1, pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[1]),p0=popt1,xtol=1e-30) popt1[0], pcov = curve_fit(vonMises, stress, np.zeros(np.shape(stress)[1]),p0=popt1[0])
popt = popt1 print 'Mises', popt1[0], pcov
print 'Hill 48', popt except Exception as detail:
print Hill48(stress,popt[0],popt[1],popt[2],popt[3],popt[4],popt[5]) print detail
pass
try:
popt1[1], pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[1]),p0=popt1[1])
print 'Hill48', popt1[1], pcov
except Exception as detail: except Exception as detail:
print detail print detail
pass pass
#popt, pcov = curve_fit(vonMises, stress, np.zeros(np.shape(stress)[0]))
#print 'von Mises', popt
#--------------------------------------------------------------------------------------------------- #---------------------------------------------------------------------------------------------------
@ -159,14 +167,12 @@ def doSim(delay,thread):
if l not in table.labels: print '%s not found'%l if l not in table.labels: print '%s not found'%l
while table.data_read(): while table.data_read():
if float(table.data[table.labels.index('Mises(ln(V))')]) > 0.002: if float(table.data[table.labels.index('Mises(ln(V))')]) > 0.002:
yieldStress = np.array(table.data[table.labels.index('1_Cauchy'):table.labels.index('9_Cauchy')+1],'d') yieldStress = np.array(table.data[table.labels.index('1_Cauchy'):table.labels.index('9_Cauchy')+1],'d')/10.e8
s.acquire() s.acquire()
print('starting fitting for sim %i from %s'%(me,thread)) print('starting fitting for sim %i from %s'%(me,thread))
global stressAll global stressAll
stressAll=np.append(yieldStress,stressAll) stressAll=np.append(yieldStress,stressAll)
for i in range(np.shape(stressAll.reshape(len(stressAll)//9,9).transpose())[1]):
print i, stressAll.reshape(len(stressAll)//9,9).transpose()[:,i]
myFit.fit(stressAll.reshape(len(stressAll)//9,9).transpose()) myFit.fit(stressAll.reshape(len(stressAll)//9,9).transpose())
s.release() s.release()
@ -183,19 +189,41 @@ def converged():
else: else:
return True return True
# main # --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Add column(s) with derived values according to user defined arithmetic operation between column(s).
Columns can be specified either by label or index. Use ';' for ',' in functions.
Example: distance to IP coordinates -- "math.sqrt( #ip.x#**2 + #ip.y#**2 + round(#ip.z#;3)**2 )"
""", version=string.replace(scriptID,'\n','\\n')
)
parser.add_option('--labelnodalcoords', dest='nodalcoords', type='string', nargs=3, \
help='labels of nodal coords in ASCII table')
parser.add_option('-l','--load' , dest='load', type='float', nargs=3, \
help='load: final strain; increments; time', metavar='float int float')
parser.add_option('-g','--geometry', dest='formulas', action='extend', type='string', \
help='(list of) formulas corresponding to labels', metavar='<LIST>')
parser.add_option('-c','--criterion',dest='formulas', action='extend', type='string', \
help='(list of) formulas corresponding to labels', metavar='<LIST>')
parser.set_defaults(load = [0.005,20,20.0])
parser.set_defaults(formulas= [])
options = parser.parse_args()[0]
minN_simulations=20 minN_simulations=20
maxN_simulations=14 maxN_simulations=40
N_simulations=0 N_simulations=0
s=threading.Semaphore(1) s=threading.Semaphore(1)
scale = 0.02 scale = 0.02
incs = 10
duration = 10
stressAll=np.zeros(0,'d').reshape(0,0) stressAll=np.zeros(0,'d').reshape(0,0)
myLoad = Loadcase() myLoad = Loadcase(options.load[0],options.load[1],options.load[2])
myFit = Criterion('Hill48') myFit = Criterion('vonmises')
N_threads=3 N_threads=3
t=[] t=[]