legacy code geom... can be achieved by combining voronoi tesselation and geom_rescale, for ipfs can be plotted from ascii table with matlab
This commit is contained in:
parent
9ec7c08bb6
commit
fd04e0763b
|
@ -1,250 +0,0 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding: UTF-8 no BOM -*-
|
||||
|
||||
import threading,time,os,subprocess,shlex,string
|
||||
import os,re,sys,math,string
|
||||
import numpy as np
|
||||
from optparse import OptionParser
|
||||
import damask
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
scriptID = string.replace('$Id: geom_directionalNonEquiaxedGrain.py 4290 2015-07-24 08:41:08Z hm.zhang $','\n','\\n')
|
||||
scriptName = os.path.splitext(scriptID.split()[1])[0]
|
||||
|
||||
def execute(cmd,streamIn=None,wd='./'):
|
||||
'''
|
||||
executes a command in given directory and returns stdout and stderr for optional stdin
|
||||
'''
|
||||
initialPath=os.getcwd()
|
||||
os.chdir(wd)
|
||||
process = subprocess.Popen(shlex.split(cmd),stdout=subprocess.PIPE,stderr = subprocess.PIPE,stdin=subprocess.PIPE)
|
||||
if streamIn != None:
|
||||
out,error = process.communicate(streamIn.read())
|
||||
else:
|
||||
out,error = process.communicate()
|
||||
os.chdir(initialPath)
|
||||
return out,error
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
identifiers = {
|
||||
'grid': ['a','b','c'],
|
||||
'size': ['x','y','z'],
|
||||
'origin': ['x','y','z'],
|
||||
}
|
||||
mappings = {
|
||||
'grid': lambda x: int(x),
|
||||
'size': lambda x: float(x),
|
||||
'origin': lambda x: float(x),
|
||||
'homogenization': lambda x: int(x),
|
||||
'microstructures': lambda x: int(x),
|
||||
}
|
||||
|
||||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||||
Generate the geometry description of a directional non-equiaxed grain structure, e.g., RVE cutted from a cold-rolling sheet.
|
||||
The initial equiaxed grain structure is generated by standard Voronoi tessellation, '--reduct' specifies the thickness
|
||||
reduction after rolling, and '-n' specified the number of samples cutted, e.g., n=5, then five samples will be cutted from the
|
||||
sheet along \\theta = 0 (the rolling direction), \\theta = 22.5, \\theta = 45, \\theta = 67.5, and \\theta = 90 (the
|
||||
transversal direction ).
|
||||
|
||||
""", version = scriptID)
|
||||
|
||||
parser.add_option('-N', dest='N', type='int', metavar='int',
|
||||
help='number of seed points to distribute [%default]')
|
||||
parser.add_option('-r', '--rnd', dest='randomSeed', type='int', nargs = 2, metavar=' '.join(['int']*2),
|
||||
help='seed of random number generator [%default]')
|
||||
parser.add_option('-m', '--microstructure', dest='microstructure', type='int', metavar='int',
|
||||
help='first microstructure index [%default]')
|
||||
parser.add_option('-g', '--grid', dest='grid', type='int', nargs = 3, metavar=' '.join(['int']*3),
|
||||
help='a,b,c grid of hexahedral box [from seeds file]')
|
||||
parser.add_option('-s', '--size', dest='size', type='float', nargs = 3, metavar=' '.join(['float']*3),
|
||||
help='x,y,z size of hexahedral box [1.0 along largest grid point number]')
|
||||
parser.add_option('--phase', dest='phase', type='int', metavar = 'int',
|
||||
help='phase index to be used [%default]')
|
||||
parser.add_option('--crystallite', dest='crystallite', type='int', metavar = 'int',
|
||||
help='crystallite index to be used [%default]')
|
||||
parser.add_option('-c', '--configuration', dest='config', action='store_true',
|
||||
help='output material configuration [%default]')
|
||||
parser.add_option('--secondphase', type='float', dest='secondphase', metavar= 'float',
|
||||
help='volume fraction of randomly distribute second phase [%default]')
|
||||
parser.add_option('-l', '--laguerre', dest='laguerre', action='store_true',
|
||||
help='use Laguerre (weighted Voronoi) tessellation [%default]')
|
||||
parser.add_option('-n', dest='number', type='int', metavar='int',
|
||||
help='the angle(degree) between the longitudinal direction of RVE and the rolling direction [%default]')
|
||||
parser.add_option('--reduct', dest='reduction', type='float', metavar='float',
|
||||
help='thickness reduction of rolling [%default]')
|
||||
parser.set_defaults(
|
||||
N = 500,
|
||||
grid = (200,100,50),
|
||||
size = (2.0,1.0,0.5),
|
||||
phase = 1,
|
||||
crystallite = 1,
|
||||
secondphase = 0.0,
|
||||
microstructure = 1,
|
||||
laguerre = False,
|
||||
randomSeed = (None,None),
|
||||
config = False,
|
||||
number = 5,
|
||||
reduction = 0.6
|
||||
)
|
||||
(options,filenames) = parser.parse_args()
|
||||
options.grid = np.array(options.grid)
|
||||
|
||||
sizeX = sizeY = max(options.size[0], options.size[1])
|
||||
gridX, gridY = int(np.ceil(sizeX/options.size[0]*options.grid[0]))+1,int(np.ceil(sizeX/options.size[1]*options.grid[1]))+1
|
||||
gridx, gridy, gridz = options.grid; sizex, sizey, sizez = options.size
|
||||
nGrids = gridx*gridy*gridz; avgGrids = nGrids/options.N
|
||||
dx, dy = options.size[0]/options.grid[0], options.size[1]/options.grid[1]
|
||||
|
||||
Ngrains = int(np.ceil(sizeX*sizeY/options.size[0]/options.size[1]*options.N))
|
||||
filename = 'grains'+str(Ngrains)+'_'+str(gridX)+str(gridY)+str(options.grid[2])
|
||||
thickness = 1.0-options.reduction
|
||||
|
||||
print 'run seeds_fromRandom'
|
||||
execute('seeds_fromRandom -N %i -g %i %i %i %s.seeds'%(Ngrains,int(gridX*thickness)+1, gridY, int(gridz/thickness)+1, filename))
|
||||
print 'run geom_fromVoronoiTessellation'
|
||||
execute('geom_fromVoronoiTessellation -s %s %s %s < %s.seeds'%(sizeX*thickness, sizeY, sizez/thickness,filename))
|
||||
print 'run geom_rescale'
|
||||
execute('geom_rescale -g %i %i %i -s %s %s %s < %s.geom > %s_scale.geom'%(gridX, gridY, gridz,
|
||||
sizeX, sizeY, sizez,filename,filename) )
|
||||
print ('the size of the cutted RVE is %sX%sX%s'%(sizex, sizey, sizez) )
|
||||
print ('the thickness reduction is %s'%('{:.1%}'.format(options.reduction)))
|
||||
|
||||
# --- loop over input files -------------------------------------------------------------------------
|
||||
filenames = [filename+'.geom']
|
||||
|
||||
for theta in np.linspace(0, np.pi/2, options.number):
|
||||
postfix = str(int(np.round(theta*180.0/np.pi)))
|
||||
c_t, s_t = np.cos(theta), np.sin(theta)
|
||||
offsetX, offsetY = 0.5*( sizeX - (sizex*c_t-sizey*s_t) ), 0.5*( sizeY - (sizex*s_t+sizey*c_t) )
|
||||
for name in filenames:
|
||||
if name == 'STDIN':
|
||||
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
|
||||
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
|
||||
else:
|
||||
if not os.path.exists(name): continue
|
||||
file = {'name':name, 'input':open(name), 'output':open(name+postfix+'_tmp','w'), 'croak':sys.stderr}
|
||||
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
|
||||
|
||||
table = damask.ASCIItable(file['input'],file['output'],buffered=False) # make unbuffered ASCII_table
|
||||
table.head_read() # read ASCII header info
|
||||
#--- interpret header ----------------------------------------------------------------------------
|
||||
info = {
|
||||
'grid': np.zeros(3,'i'),
|
||||
'size': np.array((0.0,0.0,0.0)),
|
||||
'origin': np.zeros(3,'d'),
|
||||
'microstructures': 0,
|
||||
'homogenization': 0,
|
||||
}
|
||||
newInfo = {
|
||||
'microstructures': 0,
|
||||
}
|
||||
extra_header = []
|
||||
|
||||
for header in table.info:
|
||||
headitems = map(str.lower,header.split())
|
||||
if len(headitems) == 0: continue
|
||||
if headitems[0] in mappings.keys():
|
||||
if headitems[0] in identifiers.keys():
|
||||
for i in xrange(len(identifiers[headitems[0]])):
|
||||
info[headitems[0]][i] = \
|
||||
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
|
||||
else:
|
||||
info[headitems[0]] = mappings[headitems[0]](headitems[1])
|
||||
else:
|
||||
extra_header.append(header)
|
||||
newInfo['microstructures'] = info['microstructures']
|
||||
if 0 not in options.grid: # user-specified grid
|
||||
info['grid'] = np.array(options.grid)
|
||||
|
||||
for i in xrange(3):
|
||||
if info['size'][i] <= 0.0: # any invalid size?
|
||||
info['size'][i] = float(info['grid'][i])/max(info['grid'])
|
||||
file['croak'].write('rescaling size %s...\n'%{0:'x',1:'y',2:'z'}[i])
|
||||
if np.any(info['grid'] < 1):
|
||||
file['croak'].write('invalid grid a b c.\n')
|
||||
continue
|
||||
if np.any(info['size'] <= 0.0):
|
||||
file['croak'].write('invalid size x y z.\n')
|
||||
continue
|
||||
|
||||
# read the topological data from maternal RVE file
|
||||
print ( 'cut the RVE along the direction of theta = %i'%(np.round(theta*180/np.pi)) )
|
||||
GrainNo = np.chararray((gridX, gridY, gridz), itemsize=6)
|
||||
for i in xrange(gridY*gridz):
|
||||
content = file['input'].readline().split()
|
||||
for j in xrange(gridX): GrainNo[j, np.mod(i,gridY), i/gridY] = content[j]
|
||||
|
||||
# cut a sub-RVE cooresponding to the specified direction from the maternal RVE
|
||||
subGrainNo = np.chararray((gridx, gridz, gridy), itemsize=6)
|
||||
for i in xrange(gridx):
|
||||
for j in xrange(gridy):
|
||||
I = int(np.floor( (dx*(i+0.5)*c_t - dy*(j+0.5)*s_t + offsetX)/dx))
|
||||
J = int(np.floor( (dx*(i+0.5)*s_t + dy*(j+0.5)*c_t + offsetY)/dy))
|
||||
I = min(I, gridX-1); J = min(J, gridY-1)
|
||||
for k in xrange(gridz): subGrainNo[i,k,j] = GrainNo[I,J,k]
|
||||
subGrainNoVec = subGrainNo.reshape(nGrids)
|
||||
|
||||
# count the number of grains in the sub-RVE
|
||||
index = defaultdict(list)
|
||||
for i in xrange(nGrids): index[subGrainNoVec[i]].append(i)
|
||||
ngrains = len(index)
|
||||
|
||||
# count the broken (scattered) grains due to the cutting, and merge them.
|
||||
if ngrains > options.N*1.1:
|
||||
N1, N2 = 0, nGrids
|
||||
for key in index:
|
||||
if len(index[key])>=0.4*avgGrids:
|
||||
N1+=1; N2-=len(index[key]) # N1: valid grains; N2: number of grids needed to be re-assigned orientation
|
||||
ngrid2 = min(int(0.8*avgGrids), N2/(options.N-N1)+1) # grid in each grain
|
||||
|
||||
newGrains = N2/ngrid2+1
|
||||
a = [ngrid2]*(newGrains)
|
||||
for key in index:
|
||||
if len(index[key])<0.4*avgGrids:
|
||||
for i in xrange(newGrains):
|
||||
if a[i] >= len(index[key]):
|
||||
for j in index[key]: subGrainNoVec[j] = -i-1
|
||||
a[i] -= len(index[key])
|
||||
break
|
||||
|
||||
index = defaultdict(list)
|
||||
for i in xrange(nGrids): index[subGrainNoVec[i]].append(i)
|
||||
ngrains = len(index)
|
||||
|
||||
# assign orientations
|
||||
grainsNo = np.arange(ngrains); np.random.shuffle(grainsNo)
|
||||
for i,key in enumerate(index):
|
||||
no = str(grainsNo[i]+1)
|
||||
for j in index[key]: subGrainNoVec[int(j)] = no
|
||||
|
||||
newInfo['microstructures'] = ngrains
|
||||
if newInfo['microstructures'] == 0:
|
||||
file['croak'].write('no grain info found.\n')
|
||||
continue
|
||||
|
||||
#--- write header ---------------------------------------------------------------------------------
|
||||
table.labels_clear()
|
||||
table.info_clear()
|
||||
table.info_append(extra_header+[
|
||||
scriptID + ' ' + ' '.join(sys.argv[1:]),
|
||||
"grid\ta %i\tb %i\tc %i"%(info['grid'][0],info['grid'][1],info['grid'][2],),
|
||||
"size\tx %f\ty %f\tz %f"%(options.size[0],options.size[1],options.size[2],),
|
||||
"origin\tx %f\ty %f\tz %f"%(info['origin'][0],info['origin'][1],info['origin'][2],),
|
||||
"homogenization\t%i"%info['homogenization'],
|
||||
"microstructures\t%i"%(newInfo['microstructures']),
|
||||
])
|
||||
table.head_write()
|
||||
# --- write microstructure information ------------------------------------------------------------
|
||||
formatwidth = 1+int(math.log10(newInfo['microstructures']))
|
||||
table.data = np.array(map(int, subGrainNoVec)).reshape(gridx, gridy*gridz).T
|
||||
table.data_writeArray('%%%ii'%(formatwidth),delimiter=' ')
|
||||
|
||||
#--- output finalization --------------------------------------------------------------------------
|
||||
if file['name'] != 'STDIN':
|
||||
prefix = os.path.splitext(file['name'])[0].replace('grains'+str(Ngrains),'grains'+str(ngrains))
|
||||
os.rename(name+postfix+'_tmp',
|
||||
prefix+'%s'%('_material.config' if options.config else '_'+postfix+'.geom'))
|
||||
table.close()
|
|
@ -1,153 +0,0 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import damask
|
||||
import os,sys,math,re,string
|
||||
from optparse import OptionParser
|
||||
|
||||
scriptID = string.replace('$Id$','\n','\\n')
|
||||
scriptName = scriptID.split()[1]
|
||||
|
||||
def integerFactorization(i):
|
||||
|
||||
j = int(math.floor(math.sqrt(float(i))))
|
||||
while (j>1 and int(i)%j != 0):
|
||||
j -= 1
|
||||
return j
|
||||
|
||||
def positiveRadians(angle):
|
||||
|
||||
angle = math.radians(float(angle))
|
||||
while angle < 0.0:
|
||||
angle += 2.0*math.pi
|
||||
|
||||
return angle
|
||||
|
||||
def getHeader(sizeX,sizeY,step,format):
|
||||
if format == 'ang':
|
||||
return [
|
||||
'# TEM_PIXperUM 1.000000',
|
||||
'# x-star 0.509548',
|
||||
'# y-star 0.795272',
|
||||
'# z-star 0.611799',
|
||||
'# WorkingDistance 18.000000',
|
||||
'#',
|
||||
'# Phase 1',
|
||||
'# MaterialName Al',
|
||||
'# Formula Fe',
|
||||
'# Info',
|
||||
'# Symmetry 43',
|
||||
'# LatticeConstants 2.870 2.870 2.870 90.000 90.000 90.000',
|
||||
'# NumberFamilies 4',
|
||||
'# hklFamilies 1 1 0 1 0.000000 1',
|
||||
'# hklFamilies 2 0 0 1 0.000000 1',
|
||||
'# hklFamilies 2 1 1 1 0.000000 1',
|
||||
'# hklFamilies 3 1 0 1 0.000000 1',
|
||||
'# Categories 0 0 0 0 0 ',
|
||||
'#',
|
||||
'# GRID: SquareGrid',
|
||||
'# XSTEP: ' + str(step),
|
||||
'# YSTEP: ' + str(step),
|
||||
'# NCOLS_ODD: ' + str(sizeX),
|
||||
'# NCOLS_EVEN: ' + str(sizeX),
|
||||
'# NROWS: ' + str(sizeY),
|
||||
'#',
|
||||
'# OPERATOR: ODFsammpling',
|
||||
'#',
|
||||
'# SAMPLEID: ',
|
||||
'#',
|
||||
'# SCANID: ',
|
||||
'#'
|
||||
]
|
||||
else: # ctf format
|
||||
return [ \
|
||||
'Channel Text File',
|
||||
'Prj X:\\xxx\\xxxx.cpr',
|
||||
'Author [MPIE-DAMASK]',
|
||||
'JobMode Grid',
|
||||
'XCells '+ str(sizeX),
|
||||
'YCells '+ str(sizeY),
|
||||
'XStep '+ str(step),
|
||||
'YStep '+ str(step),
|
||||
'AcqE1 0',
|
||||
'AcqE2 90',
|
||||
'AcqE3 0',
|
||||
'Euler angles refer to Sample Coordinate system (CS0)! Mag 300 Coverage 100 Device 0 KV 20 TiltAngle 70 TiltAxis 0',
|
||||
'Phases 1',
|
||||
'4.05;4.05;4.05 90;90;90 Aluminium 11 225 3803863129_5.0.6.3 -2102160418 Cryogenics18,54-55',
|
||||
'Phase X Y Bands Error Euler1 Euler2 Euler3 MAD BC BS'
|
||||
]
|
||||
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||||
output the Euler angles in the format supported by TSL (.ang or .ctf).
|
||||
|
||||
""", version = scriptID)
|
||||
|
||||
parser.add_option("-c", "--column", type="int", dest="column",
|
||||
help="starting column of Euler triplet")
|
||||
parser.add_option("-s", "--skip", type="int", dest="skip",
|
||||
help="skip this many lines of heading info [%default]")
|
||||
parser.add_option("-f", "--format", type="string", dest="format",
|
||||
help="the format of the output file [%default]")
|
||||
|
||||
parser.set_defaults (column = 1)
|
||||
parser.set_defaults (skip = 1)
|
||||
parser.set_defaults (format = 'ang')
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
options.column -= 1
|
||||
|
||||
#--- setup file handles ---------------------------------------------------------------------------
|
||||
files = []
|
||||
if filenames == []:
|
||||
files.append({'name':'STDIN','input':sys.stdin,'output':sys.stdout,'croak':sys.stderr})
|
||||
else:
|
||||
for name in filenames:
|
||||
if os.path.exists(name):
|
||||
files.append({'name':name,'input':open(name),'output':open(name+'_tmp','w'),'croak':sys.stdout})
|
||||
else:
|
||||
print('No such file or directory: '+name)
|
||||
|
||||
#--- loop over input files ------------------------------------------------------------------------
|
||||
for file in files:
|
||||
file['croak'].write('\033[1m' + scriptName + '\033[0m: ' + (file['name'] if file['name'] != 'STDIN' else '') + '\n')
|
||||
|
||||
# open texture file and read content
|
||||
textureFile = open(file['name'])
|
||||
content = textureFile.readlines()
|
||||
textureFile.close()
|
||||
|
||||
m = re.match('(\d+)\s+head',content[0],re.I)
|
||||
if m != None and options.skip == 0: options.skip = int(m.group(1))+1
|
||||
|
||||
# extract orientation angles
|
||||
if options.format == 'ang': # 'ang' file, radian
|
||||
angles = [map(positiveRadians,line.split()[options.column:options.column+3]) for line in content[options.skip:]]
|
||||
else: # 'ctf' file, degree
|
||||
angles = [line.split()[options.column:options.column+3] for line in content[options.skip:]]
|
||||
|
||||
nPoints = len(angles)
|
||||
sizeY = integerFactorization(nPoints)
|
||||
sizeX = nPoints / sizeY
|
||||
file['croak'].write('%s: %i*%i = %i (== %i)\n'%(file['name'],sizeX,sizeY,sizeX*sizeY,nPoints) )
|
||||
|
||||
# write ang/ctf file
|
||||
for line in getHeader(sizeX,sizeY,1.0,options.format):
|
||||
file['output'].write(line + '\n')
|
||||
for counter,point in enumerate(angles):
|
||||
if options.format == 'ang':
|
||||
file['output'].write(''.join(['%10.5f'%angle for angle in point])+
|
||||
''.join(['%10.5f'%coord for coord in [counter%sizeX,counter//sizeX]])+
|
||||
' 100.0 1.0 0 1 1.0\n')
|
||||
else:
|
||||
file['output'].write('1 '+
|
||||
' '.join(['%6.1f'%coord for coord in [counter%sizeX,counter//sizeX]])+
|
||||
' 5 0 '+
|
||||
' '.join(['%10.5f'%float(angle) for angle in point])+
|
||||
' 0.5000 100 0\n')
|
||||
if file['name'] != 'STDIN':
|
||||
file['output'].close()
|
||||
os.rename(file['name']+'_tmp', os.path.splitext(file['name'])[0]+'.'+options.format )
|
Loading…
Reference in New Issue