switched to faster algorithm and removed buggy multi-threading

This commit is contained in:
Pratheek Shanthraj 2013-11-11 13:00:31 +00:00
parent 36d09a4d49
commit fc8811c07d
1 changed files with 27 additions and 96 deletions

View File

@ -28,84 +28,6 @@ class extendedOption(Option):
else:
Option.take_action(self, action, dest, opt, value, values, parser)
def grainCoarsenLocal(microLocal,ix,iy,iz,window):
interfacialEnergy = lambda A,B: 1.0
struc = ndimage.generate_binary_structure(3,3)
winner = numpy.where(numpy.in1d(microLocal,options.black).reshape(microLocal.shape),
microLocal,0) # zero out non-blacklisted microstructures
diffusedMax = (winner > 0).astype(float) # concentration of immutable microstructures
boundingSlice = ndimage.measurements.find_objects(microLocal) # bounding boxes of each distinct microstructure region
diffused = {}
for grain in set(numpy.unique(microLocal)) - set(options.black) - (set([0])): # all microstructures except immutable ones
mini = [max(0, boundingSlice[grain-1][i].start - window) for i in range(3)] # upper right of expanded bounding box
maxi = [min(microLocal.shape[i], boundingSlice[grain-1][i].stop + window) for i in range(3)] # lower left of expanded bounding box
microWindow = microLocal[mini[0]:maxi[0],mini[1]:maxi[1],mini[2]:maxi[2]]
grainCharFunc = microWindow==grain
neighbours = set(numpy.unique(microWindow[ndimage.morphology.binary_dilation(grainCharFunc,structure=struc)]))\
- set([grain]) - set(options.black) # who is on my boundary?
try: # has grain been diffused previously?
diff = diffused[grain].copy() # yes: use previously diffused grain
except:
diffused[grain] = ndimage.filters.gaussian_filter((grainCharFunc).astype(float),options.d) # no: diffuse grain with unit speed
diff = diffused[grain].copy()
if len(neighbours) == 1:
speed = interfacialEnergy(grain,neighbours.pop()) # speed proportional to interfacial energy between me and neighbour
diff = speed*diff + (1.-speed)*(grainCharFunc) # rescale diffused microstructure by speed
else:
tiny = 0.001
numerator = numpy.zeros(microWindow.shape)
denominator = numpy.zeros(microWindow.shape)
weights = {grain: diff + tiny}
for i in neighbours:
miniI = [max(0, boundingSlice[i-1][j].start - window) for j in range(3)] # bounding box of neighbour
maxiI = [min(microLocal.shape[j], boundingSlice[i-1][j].stop + window) for j in range(3)]
miniCommon = [max(mini[j], boundingSlice[i-1][j].start - window) for j in range(3)] # intersection of mine and neighbouring bounding box
maxiCommon = [min(maxi[j], boundingSlice[i-1][j].stop + window) for j in range(3)]
weights[i] = tiny*numpy.ones(microWindow.shape)
try: # has neighbouring grain been diffused previously?
weights[i][miniCommon[0] - mini[0]:maxiCommon[0] - mini[0],\
miniCommon[1] - mini[1]:maxiCommon[1] - mini[1],\
miniCommon[2] - mini[2]:maxiCommon[2] - mini[2]] = diffused[i][miniCommon[0] - miniI[0]:maxiCommon[0] - miniI[0],\
miniCommon[1] - miniI[1]:maxiCommon[1] - miniI[1],\
miniCommon[2] - miniI[2]:maxiCommon[2] - miniI[2]] + tiny
except: # no: diffuse neighbouring grain with unit speed
diffused[i] = ndimage.filters.gaussian_filter((microLocal[miniI[0]:maxiI[0],\
miniI[1]:maxiI[1],\
miniI[2]:maxiI[2]]==i).astype(float),options.d)
weights[i][miniCommon[0] - mini[0]:maxiCommon[0] - mini[0],\
miniCommon[1] - mini[1]:maxiCommon[1] - mini[1],\
miniCommon[2] - mini[2]:maxiCommon[2] - mini[2]] = diffused[i][miniCommon[0] - miniI[0]:maxiCommon[0] - miniI[0],\
miniCommon[1] - miniI[1]:maxiCommon[1] - miniI[1],\
miniCommon[2] - miniI[2]:maxiCommon[2] - miniI[2]] + tiny
for grainA,grainB in itertools.combinations(neighbours,2): # combinations of possible triple junctions
speed = interfacialEnergy(grain,grainA) +\
interfacialEnergy(grain,grainB) -\
interfacialEnergy(grainA,grainB) # speed of the triple junction
weight = weights[grainA] * weights[grainB]
if numpy.any(weight > 0.01): # strongly interacting triple junction?
weight *= weights[grain]
numerator += weight*(speed*diff + (1.-speed)*(grainCharFunc))
denominator += weight
diff = numerator/denominator # weighted sum of strongly interacting triple junctions
winner[mini[0]:maxi[0],\
mini[1]:maxi[1],\
mini[2]:maxi[2]][diff > diffusedMax[mini[0]:maxi[0],\
mini[1]:maxi[1],\
mini[2]:maxi[2]]] = grain # remember me ...
diffusedMax[mini[0]:maxi[0],\
mini[1]:maxi[1],\
mini[2]:maxi[2]] = numpy.maximum(diff,diffusedMax[mini[0]:maxi[0],\
mini[1]:maxi[1],\
mini[2]:maxi[2]]) # ... and my concentration
return [winner[window:-window,window:-window,window:-window],ix,iy,iz]
def log_result(result):
ix = result[1]; iy = result[2]; iz = result[3]
microstructure[ix*stride[0]:(ix+1)*stride[0],iy*stride[1]:(iy+1)*stride[1],iz*stride[2]:(iz+1)*stride[2]] = \
result[0]
#--------------------------------------------------------------------------------------------------
# MAIN
@ -139,8 +61,6 @@ parser.add_option('-d', '--distance', dest='d', type='int', \
help='diffusion distance in voxels [%default]', metavar='float')
parser.add_option('-N', '--smooth', dest='N', type='int', \
help='N for curvature flow [%default]')
parser.add_option('-p', '--processors', dest='p', type='int', nargs = 3, \
help='number of threads in x,y,z direction %default')
parser.add_option('-b', '--black', dest='black', action='extend', type='string', \
help='indices of stationary microstructures', metavar='<LIST>')
@ -246,23 +166,34 @@ for file in files:
continue
#--- initialize helper data -----------------------------------------------------------------------
window = 4*options.d
window = 0
X,Y,Z = numpy.mgrid[0:stride[0]+2*window,0:stride[1]+2*window,0:stride[2]+2*window]
gauss = numpy.exp(-(X*X+Y*Y+Z*Z)/(2.0*options.d*options.d))/math.pow(2.0*numpy.pi*options.d*options.d,1.5)
gauss[:,:,(stride[2]+2*window)/2::] = gauss[:,:,(stride[2]+2*window)/2-1::-1]
gauss[:,(stride[1]+2*window)/2::,:] = gauss[:,(stride[1]+2*window)/2-1::-1,:]
gauss[(stride[0]+2*window)/2::,:,:] = gauss[(stride[0]+2*window)/2-1::-1,:,:]
gauss = numpy.fft.rfftn(gauss)
for smoothIter in xrange(options.N):
extendedMicro = numpy.tile(microstructure,[3,3,3])
extendedMicro = extendedMicro[(info['grid'][0]-window):-(info['grid'][0]-window),
(info['grid'][1]-window):-(info['grid'][1]-window),
(info['grid'][2]-window):-(info['grid'][2]-window)]
pool = Pool(processes=numProc)
for iz in xrange(options.p[2]):
for iy in xrange(options.p[1]):
for ix in xrange(options.p[0]):
pool.apply_async(grainCoarsenLocal,(extendedMicro[ix*stride[0]:(ix+1)*stride[0]+2*window,\
iy*stride[1]:(iy+1)*stride[1]+2*window,\
iz*stride[2]:(iz+1)*stride[2]+2*window],\
ix,iy,iz,window), callback=log_result)
pool.close()
pool.join()
interfacialEnergy = lambda A,B: (A*B != 0)*(A != B)*1.0
struc = ndimage.generate_binary_structure(3,1)
microExt = numpy.zeros([microstructure.shape[0]+2,microstructure.shape[1]+2,microstructure.shape[2]+2])
microExt[1:-1,1:-1,1:-1] = microstructure
boundary = numpy.zeros(microstructure.shape)
for i in range(3):
for j in range(3):
for k in range(3):
boundary = numpy.maximum(boundary,\
interfacialEnergy(microstructure,microExt[i:microstructure.shape[0]+i,\
j:microstructure.shape[1]+j,\
k:microstructure.shape[2]+k]))
index = ndimage.morphology.distance_transform_edt(boundary == 0.,return_distances=False,return_indices=True)
boundary = numpy.fft.irfftn(numpy.fft.rfftn(numpy.where(ndimage.morphology.binary_dilation(boundary!=0.,\
structure=struc,\
iterations=2*options.d-1),\
boundary[index[0].flatten(),index[1].flatten(),index[2].flatten()].reshape(microstructure.shape),\
0.))*gauss)
index = ndimage.morphology.distance_transform_edt(boundary >= 0.5,return_distances=False,return_indices=True)
microstructure = microstructure[index[0].flatten(),index[1].flatten(),index[2].flatten()].reshape(microstructure.shape)
# --- assemble header -----------------------------------------------------------------------------
newInfo['microstructures'] = microstructure.max()