functions have no side-effects, hence 'pure'

This commit is contained in:
Martin Diehl 2021-12-29 07:19:26 +01:00
parent 59bb264b5f
commit fb51e3c4cd
2 changed files with 8 additions and 8 deletions

View File

@ -2070,7 +2070,7 @@ end function getlabels
!> @brief Equivalent Poisson's ratio (ν)
!> @details https://doi.org/10.1143/JPSJ.20.635
!--------------------------------------------------------------------------------------------------
function lattice_equivalent_nu(C,assumption) result(nu)
pure function lattice_equivalent_nu(C,assumption) result(nu)
real(pReal), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation)
character(len=5), intent(in) :: assumption !< Assumption ('Voigt' = isostrain, 'Reuss' = isostress)
@ -2103,7 +2103,7 @@ end function lattice_equivalent_nu
!> @brief Equivalent shear modulus (μ)
!> @details https://doi.org/10.1143/JPSJ.20.635
!--------------------------------------------------------------------------------------------------
function lattice_equivalent_mu(C,assumption) result(mu)
pure function lattice_equivalent_mu(C,assumption) result(mu)
real(pReal), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation)
character(len=5), intent(in) :: assumption !< Assumption ('Voigt' = isostrain, 'Reuss' = isostress)

View File

@ -512,7 +512,7 @@ end subroutine math_invert33
!--------------------------------------------------------------------------------------------------
!> @brief Inversion of symmetriced 3x3x3x3 matrix
!--------------------------------------------------------------------------------------------------
function math_invSym3333(A)
pure function math_invSym3333(A)
real(pReal),dimension(3,3,3,3) :: math_invSym3333
@ -538,7 +538,7 @@ end function math_invSym3333
!--------------------------------------------------------------------------------------------------
!> @brief invert quadratic matrix of arbitrary dimension
!--------------------------------------------------------------------------------------------------
subroutine math_invert(InvA, error, A)
pure subroutine math_invert(InvA, error, A)
real(pReal), dimension(:,:), intent(in) :: A
real(pReal), dimension(size(A,1),size(A,1)), intent(out) :: invA
@ -996,7 +996,7 @@ end subroutine math_normal
!--------------------------------------------------------------------------------------------------
!> @brief eigenvalues and eigenvectors of symmetric matrix
!--------------------------------------------------------------------------------------------------
subroutine math_eigh(w,v,error,m)
pure subroutine math_eigh(w,v,error,m)
real(pReal), dimension(:,:), intent(in) :: m !< quadratic matrix to compute eigenvectors and values of
real(pReal), dimension(size(m,1)), intent(out) :: w !< eigenvalues
@ -1021,7 +1021,7 @@ end subroutine math_eigh
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @details See http://arxiv.org/abs/physics/0610206 (DSYEVH3)
!--------------------------------------------------------------------------------------------------
subroutine math_eigh33(w,v,m)
pure subroutine math_eigh33(w,v,m)
real(pReal), dimension(3,3),intent(in) :: m !< 3x3 matrix to compute eigenvectors and values of
real(pReal), dimension(3), intent(out) :: w !< eigenvalues
@ -1114,7 +1114,7 @@ end function math_rotationalPart
!> @brief Eigenvalues of symmetric matrix
! will return NaN on error
!--------------------------------------------------------------------------------------------------
function math_eigvalsh(m)
pure function math_eigvalsh(m)
real(pReal), dimension(:,:), intent(in) :: m !< symmetric matrix to compute eigenvalues of
real(pReal), dimension(size(m,1)) :: math_eigvalsh
@ -1137,7 +1137,7 @@ end function math_eigvalsh
!> but apparently more stable solution and has general LAPACK powered version for arbritrary sized
!> matrices as fallback
!--------------------------------------------------------------------------------------------------
function math_eigvalsh33(m)
pure function math_eigvalsh33(m)
real(pReal), intent(in), dimension(3,3) :: m !< 3x3 symmetric matrix to compute eigenvalues of
real(pReal), dimension(3) :: math_eigvalsh33,I