tested
bugfix: correct coordinates for periodic Laguerre performance: do not waste memory
This commit is contained in:
parent
a2b92569d2
commit
f961f3590c
2
PRIVATE
2
PRIVATE
|
@ -1 +1 @@
|
||||||
Subproject commit c8bf5cf4b4700cb9b9cd3db67a9148298598ba3f
|
Subproject commit 62bd5ede5260cd4e0e3d1c3930c474c1e045aeef
|
|
@ -4,6 +4,7 @@ import os
|
||||||
import sys
|
import sys
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
from io import StringIO
|
from io import StringIO
|
||||||
|
from functools import partial
|
||||||
from optparse import OptionParser,OptionGroup
|
from optparse import OptionParser,OptionGroup
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -11,12 +12,9 @@ from scipy import spatial
|
||||||
|
|
||||||
import damask
|
import damask
|
||||||
|
|
||||||
def findClosestSeed(fargs):
|
|
||||||
seeds, myWeights, point = fargs
|
|
||||||
tmp = np.repeat(point.reshape(3,1), len(seeds), axis=1).T
|
|
||||||
dist = np.sum((tmp - seeds)**2,axis=1) -myWeights
|
|
||||||
return np.argmin(dist) # seed point closest to point
|
|
||||||
|
|
||||||
|
def findClosestSeed(seeds, weights, point):
|
||||||
|
return np.argmin(np.sum((np.broadcast_to(point,(len(seeds),3))-seeds)**2,axis=1) - weights)
|
||||||
|
|
||||||
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||||
scriptID = ' '.join([scriptName,damask.version])
|
scriptID = ' '.join([scriptName,damask.version])
|
||||||
|
@ -26,25 +24,22 @@ def Laguerre_tessellation(grid, seeds, grains, size, periodic, weights, cpus):
|
||||||
|
|
||||||
if periodic:
|
if periodic:
|
||||||
weights_p = np.tile(weights,27).flatten(order='F') # Laguerre weights (1,2,3,1,2,3,...,1,2,3)
|
weights_p = np.tile(weights,27).flatten(order='F') # Laguerre weights (1,2,3,1,2,3,...,1,2,3)
|
||||||
seeds_p = np.vstack((seeds +np.array([size[0],0.,0.]),seeds, seeds +np.array([size[0],0.,0.])))
|
seeds_p = np.vstack((seeds -np.array([size[0],0.,0.]),seeds, seeds +np.array([size[0],0.,0.])))
|
||||||
seeds_p = np.vstack((seeds_p+np.array([0.,size[1],0.]),seeds_p,seeds_p+np.array([0.,size[1],0.])))
|
seeds_p = np.vstack((seeds_p-np.array([0.,size[1],0.]),seeds_p,seeds_p+np.array([0.,size[1],0.])))
|
||||||
seeds_p = np.vstack((seeds_p+np.array([0.,0.,size[2]]),seeds_p,seeds_p+np.array([0.,0.,size[2]])))
|
seeds_p = np.vstack((seeds_p-np.array([0.,0.,size[2]]),seeds_p,seeds_p+np.array([0.,0.,size[2]])))
|
||||||
else:
|
else:
|
||||||
weights_p = weights.flatten()
|
weights_p = weights.flatten()
|
||||||
seeds_p = seeds
|
seeds_p = seeds
|
||||||
|
|
||||||
arguments = [[seeds_p,weights_p,arg] for arg in list(grid)]
|
if cpus > 1:
|
||||||
|
default_args = partial(findClosestSeed,seeds_p,weights_p)
|
||||||
if cpus > 1: # use multithreading
|
|
||||||
pool = multiprocessing.Pool(processes = cpus) # initialize workers
|
pool = multiprocessing.Pool(processes = cpus) # initialize workers
|
||||||
result = pool.map_async(findClosestSeed, arguments) # evaluate function in parallel
|
result = pool.map_async(default_args, [point for point in grid]) # evaluate function in parallel
|
||||||
pool.close()
|
pool.close()
|
||||||
pool.join()
|
pool.join()
|
||||||
closestSeeds = np.array(result.get()).flatten()
|
closestSeeds = np.array(result.get()).flatten()
|
||||||
else:
|
else:
|
||||||
closestSeeds = np.zeros(len(arguments),dtype='i')
|
closestSeeds= np.array([findClosestSeed(seeds_p,weights_p,point) for point in grid])
|
||||||
for i,arg in enumerate(arguments):
|
|
||||||
closestSeeds[i] = findClosestSeed(arg)
|
|
||||||
|
|
||||||
return grains[closestSeeds%seeds.shape[0]]
|
return grains[closestSeeds%seeds.shape[0]]
|
||||||
|
|
||||||
|
@ -53,6 +48,7 @@ def Voronoi_tessellation(grid, seeds, grains, size, periodic = True):
|
||||||
|
|
||||||
KDTree = spatial.cKDTree(seeds,boxsize=size) if periodic else spatial.cKDTree(seeds)
|
KDTree = spatial.cKDTree(seeds,boxsize=size) if periodic else spatial.cKDTree(seeds)
|
||||||
devNull,closestSeeds = KDTree.query(grid)
|
devNull,closestSeeds = KDTree.query(grid)
|
||||||
|
|
||||||
return grains[closestSeeds]
|
return grains[closestSeeds]
|
||||||
|
|
||||||
|
|
||||||
|
@ -185,7 +181,6 @@ for name in filenames:
|
||||||
if options.size: size = np.array(options.size)
|
if options.size: size = np.array(options.size)
|
||||||
if options.origin: origin = np.array(options.origin)
|
if options.origin: origin = np.array(options.origin)
|
||||||
|
|
||||||
|
|
||||||
seeds = table.get(options.pos)
|
seeds = table.get(options.pos)
|
||||||
|
|
||||||
grains = table.get(options.microstructure) if options.microstructure in table.labels else np.arange(len(seeds))+1
|
grains = table.get(options.microstructure) if options.microstructure in table.labels else np.arange(len(seeds))+1
|
||||||
|
|
Loading…
Reference in New Issue