rearranged arguments of "constitutive_nonlocal_kinetics", got "tauTreshold" as argument, not complete state

don't call "constitutive_nonlocal_kinetics" twice for edges in case of nonSchmid behavior, but just call once and copy results from positive to negative edges
This commit is contained in:
Christoph Kords 2013-08-21 07:55:34 +00:00
parent 277972edbd
commit f706ba3ff9
1 changed files with 73 additions and 70 deletions

View File

@ -1550,7 +1550,7 @@ endsubroutine
!*********************************************************************
!* calculates kinetics *
!*********************************************************************
subroutine constitutive_nonlocal_kinetics(v, tau, c, Temperature, state, g, ip, el, dv_dtau)
subroutine constitutive_nonlocal_kinetics(v, dv_dtau, tau, tauThreshold, c, Temperature, g, ip, el)
use debug, only: debug_level, &
debug_constitutive, &
@ -1566,56 +1566,52 @@ use material, only: material_phase, &
implicit none
!*** input variables
integer(pInt), intent(in) :: g, & ! current grain number
ip, & ! current integration point
el, & ! current element number
c ! dislocation character (1:edge, 2:screw)
real(pReal), intent(in) :: Temperature ! temperature
integer(pInt), intent(in) :: g, & !< current grain number
ip, & !< current integration point
el, & !< current element number
c !< dislocation character (1:edge, 2:screw)
real(pReal), intent(in) :: Temperature !< temperature
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))), &
intent(in) :: tau ! resolved external shear stress (for bcc this already contains non Schmid effects)
type(p_vec), intent(in) :: state ! microstructural state
!*** input/output variables
intent(in) :: tau, & !< resolved external shear stress (for bcc this already contains non Schmid effects)
tauThreshold !< threshold shear stress
!*** output variables
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))), &
intent(out) :: v ! velocity
intent(out) :: v !< velocity
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))), &
intent(out) :: dv_dtau ! velocity derivative with respect to resolved shear stress
intent(out) :: dv_dtau !< velocity derivative with respect to resolved shear stress
!*** local variables
integer(pInt) :: instance, & ! current instance of this plasticity
ns, & ! short notation for the total number of active slip systems
s ! index of my current slip system
integer(pInt) :: instance, & !< current instance of this plasticity
ns, & !< short notation for the total number of active slip systems
s !< index of my current slip system
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
tauThreshold, & ! threshold shear stress
tauEff ! effective shear stress
tauEff !< effective shear stress
real(pReal) tauRel_P, &
tauRel_S, &
tPeierls, & ! waiting time in front of a peierls barriers
tSolidSolution, & ! waiting time in front of a solid solution obstacle
vViscous, & ! viscous glide velocity
dtPeierls_dtau, & ! derivative with respect to resolved shear stress
dtSolidSolution_dtau, & ! derivative with respect to resolved shear stress
meanfreepath_S, & ! mean free travel distance for dislocations between two solid solution obstacles
meanfreepath_P, & ! mean free travel distance for dislocations between two Peierls barriers
jumpWidth_P, & ! depth of activated area
jumpWidth_S, & ! depth of activated area
activationLength_P, & ! length of activated dislocation line
activationLength_S, & ! length of activated dislocation line
activationVolume_P, & ! volume that needs to be activated to overcome barrier
activationVolume_S, & ! volume that needs to be activated to overcome barrier
activationEnergy_P, & ! energy that is needed to overcome barrier
activationEnergy_S, & ! energy that is needed to overcome barrier
criticalStress_P, & ! maximum obstacle strength
criticalStress_S, & ! maximum obstacle strength
mobility ! dislocation mobility
tPeierls, & !< waiting time in front of a peierls barriers
tSolidSolution, & !< waiting time in front of a solid solution obstacle
vViscous, & !< viscous glide velocity
dtPeierls_dtau, & !< derivative with respect to resolved shear stress
dtSolidSolution_dtau, & !< derivative with respect to resolved shear stress
meanfreepath_S, & !< mean free travel distance for dislocations between two solid solution obstacles
meanfreepath_P, & !< mean free travel distance for dislocations between two Peierls barriers
jumpWidth_P, & !< depth of activated area
jumpWidth_S, & !< depth of activated area
activationLength_P, & !< length of activated dislocation line
activationLength_S, & !< length of activated dislocation line
activationVolume_P, & !< volume that needs to be activated to overcome barrier
activationVolume_S, & !< volume that needs to be activated to overcome barrier
activationEnergy_P, & !< energy that is needed to overcome barrier
activationEnergy_S, & !< energy that is needed to overcome barrier
criticalStress_P, & !< maximum obstacle strength
criticalStress_S, & !< maximum obstacle strength
mobility !< dislocation mobility
instance = phase_plasticityInstance(material_phase(g,ip,el))
ns = totalNslip(instance)
tauThreshold = state%p(iTauF(1:ns,instance))
tauEff = abs(tau) - tauThreshold
v = 0.0_pReal
@ -1739,42 +1735,43 @@ use mesh, only: mesh_ipVolume
implicit none
!*** input variables
integer(pInt), intent(in) :: g, & ! current grain number
ip, & ! current integration point
el ! current element number
real(pReal), intent(in) :: Temperature ! temperature
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola-Kirchhoff stress in Mandel notation
integer(pInt), intent(in) :: g, & !< current grain number
ip, & !< current integration point
el !< current element number
real(pReal), intent(in) :: Temperature !< temperature
real(pReal), dimension(6), intent(in) :: Tstar_v !< 2nd Piola-Kirchhoff stress in Mandel notation
!*** input/output variables
type(p_vec), intent(inout) :: state ! microstructural state
type(p_vec), intent(inout) :: state !< microstructural state
!*** output variables
real(pReal), dimension(3,3), intent(out) :: Lp ! plastic velocity gradient
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar99 ! derivative of Lp with respect to Tstar (9x9 matrix)
real(pReal), dimension(3,3), intent(out) :: Lp !< plastic velocity gradient
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar99 !< derivative of Lp with respect to Tstar (9x9 matrix)
!*** local variables
integer(pInt) myInstance, & ! current instance of this plasticity
myStructure, & ! current lattice structure
ns, & ! short notation for the total number of active slip systems
integer(pInt) myInstance, & !< current instance of this plasticity
myStructure, & !< current lattice structure
ns, & !< short notation for the total number of active slip systems
c, &
i, &
j, &
k, &
l, &
t, & ! dislocation type
s, & ! index of my current slip system
sLattice ! index of my current slip system according to lattice order
real(pReal), dimension(3,3,3,3) :: dLp_dTstar3333 ! derivative of Lp with respect to Tstar (3x3x3x3 matrix)
t, & !< dislocation type
s, & !< index of my current slip system
sLattice !< index of my current slip system according to lattice order
real(pReal), dimension(3,3,3,3) :: dLp_dTstar3333 !< derivative of Lp with respect to Tstar (3x3x3x3 matrix)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),8) :: &
rhoSgl ! single dislocation densities (including blocked)
rhoSgl !< single dislocation densities (including blocked)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),4) :: &
v, & ! velocity
tau, & ! resolved shear stress including non Schmid and backstress terms
dgdot_dtau, & ! derivative of the shear rate with respect to the shear stress
dv_dtau ! velocity derivative with respect to the shear stress
v, & !< velocity
tau, & !< resolved shear stress including non Schmid and backstress terms
dgdot_dtau, & !< derivative of the shear rate with respect to the shear stress
dv_dtau !< velocity derivative with respect to the shear stress
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
gdotTotal, & ! shear rate
tauBack, & ! back stress from dislocation gradients on same slip system
gdotTotal, & !< shear rate
tauBack, & !< back stress from dislocation gradients on same slip system
tauThreshold, & !< threshold shear stress
deadZoneSize
@ -1800,9 +1797,10 @@ where (abs(rhoSgl) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(myInstan
rhoSgl = 0.0_pReal
tauBack = state%p(iTauB(1:ns,myInstance))
tauThreshold = state%p(iTauF(1:ns,myInstance))
!*** get effective resolved shear stress
!*** get resolved shear stress
!*** for screws possible non-schmid contributions are also taken into account
do s = 1_pInt,ns
@ -1822,19 +1820,24 @@ enddo
!*** get dislocation velocity and its tangent and store the velocity in the state array
if (myStructure == 1_pInt .and. lattice_NnonSchmid(myStructure) == 0_pInt) then ! for fcc all velcities are equal
call constitutive_nonlocal_kinetics(v(1:ns,1), tau(1:ns,1), 1_pInt, Temperature, state, &
g, ip, el, dv_dtau(1:ns,1))
do t = 1_pInt,4_pInt
! edges
call constitutive_nonlocal_kinetics(v(1:ns,1), dv_dtau(1:ns,1), tau(1:ns,1), tauThreshold(1:ns), &
1_pInt, Temperature, g, ip, el)
v(1:ns,2) = v(1:ns,1)
dv_dtau(1:ns,2) = dv_dtau(1:ns,1)
state%p(iV(1:ns,2,myInstance)) = v(1:ns,1)
!screws
if (lattice_NnonSchmid(myStructure) == 0_pInt) then ! no non-Schmid contributions
forall(t = 3_pInt:4_pInt)
v(1:ns,t) = v(1:ns,1)
dv_dtau(1:ns,t) = dv_dtau(1:ns,1)
state%p(iV(1:ns,t,myInstance)) = v(1:ns,1)
enddo
else ! for all other lattice structures the velocities may vary with character and sign
do t = 1_pInt,4_pInt
c = (t-1_pInt)/2_pInt+1_pInt
call constitutive_nonlocal_kinetics(v(1:ns,t), tau(1:ns,t), c, Temperature, state, &
g, ip, el, dv_dtau(1:ns,t))
endforall
else ! take non-Schmid contributions into account
do t = 3_pInt,4_pInt
call constitutive_nonlocal_kinetics(v(1:ns,t), dv_dtau(1:ns,t), tau(1:ns,t), tauThreshold(1:ns), &
2_pInt , Temperature, g, ip, el)
state%p(iV(1:ns,t,myInstance)) = v(1:ns,t)
enddo
endif