Merge branch 'US-english' into 'development'
changed British "normalise" to US "normalize" as we (should) follow US English everywhere else. See merge request damask/DAMASK!217
This commit is contained in:
commit
f57cb8b780
|
@ -104,8 +104,8 @@ input = [options.eulers is not None,
|
|||
|
||||
if np.sum(input) != 1: parser.error('needs exactly one input format.')
|
||||
|
||||
r = damask.Rotation.from_axis_angle(np.array(options.crystalrotation),options.degrees,normalise=True)
|
||||
R = damask.Rotation.from_axis_angle(np.array(options.labrotation),options.degrees,normalise=True)
|
||||
r = damask.Rotation.from_axis_angle(np.array(options.crystalrotation),options.degrees,normalize=True)
|
||||
R = damask.Rotation.from_axis_angle(np.array(options.labrotation),options.degrees,normalize=True)
|
||||
|
||||
for name in filenames:
|
||||
damask.util.report(scriptName,name)
|
||||
|
|
|
@ -408,7 +408,7 @@ class Rotation:
|
|||
@staticmethod
|
||||
def from_axis_angle(axis_angle,
|
||||
degrees = False,
|
||||
normalise = False,
|
||||
normalize = False,
|
||||
P = -1):
|
||||
"""
|
||||
Initialize from Axis angle pair.
|
||||
|
@ -434,7 +434,7 @@ class Rotation:
|
|||
|
||||
if P == 1: ax[...,0:3] *= -1
|
||||
if degrees: ax[..., 3] = np.radians(ax[...,3])
|
||||
if normalise: ax[...,0:3] /= np.linalg.norm(ax[...,0:3],axis=-1)
|
||||
if normalize: ax[...,0:3] /= np.linalg.norm(ax[...,0:3],axis=-1)
|
||||
if np.any(ax[...,3] < 0.0) or np.any(ax[...,3] > np.pi):
|
||||
raise ValueError('Axis angle rotation angle outside of [0..π].')
|
||||
if not np.all(np.isclose(np.linalg.norm(ax[...,0:3],axis=-1), 1.0)):
|
||||
|
@ -493,7 +493,7 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def from_Rodrigues(rho,
|
||||
normalise = False,
|
||||
normalize = False,
|
||||
P = -1):
|
||||
"""
|
||||
Initialize from Rodrigues-Frank vector.
|
||||
|
@ -516,7 +516,7 @@ class Rotation:
|
|||
raise ValueError('P ∉ {-1,1}')
|
||||
|
||||
if P == 1: ro[...,0:3] *= -1
|
||||
if normalise: ro[...,0:3] /= np.linalg.norm(ro[...,0:3],axis=-1)
|
||||
if normalize: ro[...,0:3] /= np.linalg.norm(ro[...,0:3],axis=-1)
|
||||
if np.any(ro[...,3] < 0.0):
|
||||
raise ValueError('Rodrigues vector rotation angle not positive.')
|
||||
if not np.all(np.isclose(np.linalg.norm(ro[...,0:3],axis=-1), 1.0)):
|
||||
|
|
|
@ -698,13 +698,13 @@ class TestRotation:
|
|||
assert ok and np.isclose(np.linalg.norm(o),1.0)
|
||||
|
||||
@pytest.mark.parametrize('P',[1,-1])
|
||||
@pytest.mark.parametrize('normalise',[True,False])
|
||||
@pytest.mark.parametrize('normalize',[True,False])
|
||||
@pytest.mark.parametrize('degrees',[True,False])
|
||||
def test_axis_angle(self,set_of_rotations,degrees,normalise,P):
|
||||
def test_axis_angle(self,set_of_rotations,degrees,normalize,P):
|
||||
c = np.array([P*-1,P*-1,P*-1,1.])
|
||||
for rot in set_of_rotations:
|
||||
m = rot.as_Eulers()
|
||||
o = Rotation.from_axis_angle(rot.as_axis_angle(degrees)*c,degrees,normalise,P).as_Eulers()
|
||||
o = Rotation.from_axis_angle(rot.as_axis_angle(degrees)*c,degrees,normalize,P).as_Eulers()
|
||||
u = np.array([np.pi*2,np.pi,np.pi*2])
|
||||
ok = np.allclose(m,o,atol=atol)
|
||||
ok = ok or np.allclose(np.where(np.isclose(m,u),m-u,m),np.where(np.isclose(o,u),o-u,o),atol=atol)
|
||||
|
@ -725,12 +725,12 @@ class TestRotation:
|
|||
assert ok and np.isclose(np.linalg.norm(o[:3]),1.0) and o[3]<=np.pi+1.e-9
|
||||
|
||||
@pytest.mark.parametrize('P',[1,-1])
|
||||
@pytest.mark.parametrize('normalise',[True,False])
|
||||
def test_Rodrigues(self,set_of_rotations,normalise,P):
|
||||
@pytest.mark.parametrize('normalize',[True,False])
|
||||
def test_Rodrigues(self,set_of_rotations,normalize,P):
|
||||
c = np.array([P*-1,P*-1,P*-1,1.])
|
||||
for rot in set_of_rotations:
|
||||
m = rot.as_matrix()
|
||||
o = Rotation.from_Rodrigues(rot.as_Rodrigues()*c,normalise,P).as_matrix()
|
||||
o = Rotation.from_Rodrigues(rot.as_Rodrigues()*c,normalize,P).as_matrix()
|
||||
ok = np.allclose(m,o,atol=atol)
|
||||
print(m,o)
|
||||
assert ok and np.isclose(np.linalg.det(o),1.0)
|
||||
|
|
Loading…
Reference in New Issue