changed 'range' keyword to 'limit', now using proper ASCII table (with column 'intensity') for linearODF
hybridIO_linODFsampling simplified
This commit is contained in:
parent
e29628b459
commit
f5762209dc
|
@ -611,7 +611,7 @@ function IO_hybridIA(Nast,ODFfileName)
|
|||
read(FILEUNIT,'(a1024)') line
|
||||
positions = IO_stringPos(line,7_pInt)
|
||||
select case ( IO_lc(IO_StringValue(line,positions,1_pInt,.true.)) )
|
||||
case ('range')
|
||||
case ('limit')
|
||||
gotRange = .true.
|
||||
do j = 2_pInt,6_pInt,2_pInt
|
||||
select case (IO_lc(IO_stringValue(line,positions,j)))
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
3 header
|
||||
range phi1 90 PHI 90 phi2 90
|
||||
4 header
|
||||
limit phi1 90 PHI 90 phi2 90
|
||||
delta phi1 5 PHI 5 phi2 5
|
||||
origin voxelBoundary
|
||||
intensity
|
||||
0.905
|
||||
0.4025
|
||||
0.1925
|
||||
|
|
|
@ -3,11 +3,12 @@
|
|||
from optparse import OptionParser
|
||||
import damask
|
||||
import os,sys,math,re,random,string
|
||||
import numpy as np
|
||||
|
||||
scriptID = string.replace('$Id$','\n','\\n')
|
||||
scriptName = scriptID.split()[1]
|
||||
|
||||
random.seed()
|
||||
random.seed(1)
|
||||
|
||||
# --- helper functions ---
|
||||
|
||||
|
@ -25,10 +26,9 @@ def binsAsBin(bins,intervals):
|
|||
|
||||
def EulersAsBins(Eulers,intervals,deltas,center):
|
||||
""" return list of Eulers translated into 3D bins list """
|
||||
return [\
|
||||
int((euler+(0.5-center)*delta)//delta)%interval \
|
||||
for euler,delta,interval in zip(Eulers,deltas,intervals) \
|
||||
]
|
||||
return [int((euler+(0.5-center)*delta)//delta)%interval \
|
||||
for euler,delta,interval in zip(Eulers,deltas,intervals) \
|
||||
]
|
||||
|
||||
def binAsEulers(bin,intervals,deltas,center):
|
||||
""" compound bin number translated into list of Eulers """
|
||||
|
@ -46,24 +46,17 @@ def directInvRepetitions(probability,scale):
|
|||
return nDirectInv
|
||||
|
||||
|
||||
# --- sampling methods ---
|
||||
# ---------------------- sampling methods -----------------------------------------------------------------------
|
||||
|
||||
# ----- efficient algorithm ---------
|
||||
|
||||
def directInversion (ODF,nSamples):
|
||||
""" ODF contains 'dV_V' (normalized to 1), 'center', 'intervals', 'limits' (in radians) """
|
||||
|
||||
nBins = ODF['intervals'][0]*ODF['intervals'][1]*ODF['intervals'][2]
|
||||
deltas = [limit/intervals for limit,intervals in zip(ODF['limits'],ODF['intervals'])]
|
||||
|
||||
# calculate repetitions of each orientation
|
||||
if re.search(r'hybrid',sys.argv[0],re.IGNORECASE): # my script's name contains "hybrid"
|
||||
nOptSamples = max(ODF['nNonZero'],nSamples) # random subsampling if too little samples requested
|
||||
else: # blunt integer approximation
|
||||
nOptSamples = nSamples
|
||||
nOptSamples = max(ODF['nNonZero'],nSamples) # random subsampling if too little samples requested
|
||||
|
||||
nInvSamples = 0
|
||||
repetition = [None]*nBins
|
||||
repetition = [None]*ODF['nBins']
|
||||
probabilityScale = nOptSamples # guess
|
||||
|
||||
scaleLower = 0.0
|
||||
|
@ -89,27 +82,27 @@ def directInversion (ODF,nSamples):
|
|||
nInvSamples = nInvSamplesUpper
|
||||
scale = scaleUpper
|
||||
print 'created set of',nInvSamples,'samples (',float(nInvSamples)/nOptSamples-1.0,') with scaling',scale,'delivering',nSamples
|
||||
repetition = [None]*nBins # preallocate and clear
|
||||
repetition = [None]*ODF['nBins'] # preallocate and clear
|
||||
|
||||
for bin in range(nBins): # loop over bins
|
||||
for bin in range(ODF['nBins']): # loop over bins
|
||||
repetition[bin] = int(round(ODF['dV_V'][bin]*scale)) # calc repetition
|
||||
|
||||
# build set
|
||||
set = [None]*nInvSamples
|
||||
i = 0
|
||||
for bin in range(nBins):
|
||||
for bin in range(ODF['nBins']):
|
||||
set[i:i+repetition[bin]] = [bin]*repetition[bin] # fill set with bin, i.e. orientation
|
||||
i += repetition[bin] # advance set counter
|
||||
|
||||
orientations = [None]*nSamples
|
||||
reconstructedODF = [0.0]*nBins
|
||||
reconstructedODF = [0.0]*ODF['nBins']
|
||||
unitInc = 1.0/nSamples
|
||||
for j in range(nSamples):
|
||||
if (j == nInvSamples-1): ex = j
|
||||
else: ex = int(round(random.uniform(j+0.5,nInvSamples-0.5)))
|
||||
bin = set[ex]
|
||||
bins = binAsBins(bin,ODF['intervals'])
|
||||
Eulers = binAsEulers(bin,ODF['intervals'],deltas,ODF['center'])
|
||||
bins = binAsBins(bin,ODF['interval'])
|
||||
Eulers = binAsEulers(bin,ODF['interval'],ODF['delta'],ODF['center'])
|
||||
orientations[j] = '%g\t%g\t%g' %( math.degrees(Eulers[0]),math.degrees(Eulers[1]),math.degrees(Eulers[2]) )
|
||||
reconstructedODF[bin] += unitInc
|
||||
set[ex] = set[j] # exchange orientations
|
||||
|
@ -124,10 +117,8 @@ def MonteCarloEulers (ODF,nSamples):
|
|||
|
||||
countMC = 0
|
||||
maxdV_V = max(ODF['dV_V'])
|
||||
nBins = ODF['intervals'][0]*ODF['intervals'][1]*ODF['intervals'][2]
|
||||
deltas = [limit/intervals for limit,intervals in zip(ODF['limits'],ODF['intervals'])]
|
||||
orientations = [None]*nSamples
|
||||
reconstructedODF = [0.0]*nBins
|
||||
reconstructedODF = [0.0]*ODF['nBins']
|
||||
unitInc = 1.0/nSamples
|
||||
|
||||
for j in range(nSamples):
|
||||
|
@ -136,9 +127,9 @@ def MonteCarloEulers (ODF,nSamples):
|
|||
while MC > ODF['dV_V'][bin]:
|
||||
countMC += 1
|
||||
MC = maxdV_V*random.random()
|
||||
Eulers = [limit*random.random() for limit in ODF['limits']]
|
||||
bins = EulersAsBins(Eulers,ODF['intervals'],deltas,ODF['center'])
|
||||
bin = binsAsBin(bins,ODF['intervals'])
|
||||
Eulers = [limit*random.random() for limit in ODF['limit']]
|
||||
bins = EulersAsBins(Eulers,ODF['interval'],ODF['delta'],ODF['center'])
|
||||
bin = binsAsBin(bins,ODF['interval'])
|
||||
orientations[j] = '%g\t%g\t%g' %( math.degrees(Eulers[0]),math.degrees(Eulers[1]),math.degrees(Eulers[2]) )
|
||||
reconstructedODF[bin] += unitInc
|
||||
|
||||
|
@ -150,10 +141,8 @@ def MonteCarloBins (ODF,nSamples):
|
|||
|
||||
countMC = 0
|
||||
maxdV_V = max(ODF['dV_V'])
|
||||
nBins = ODF['intervals'][0]*ODF['intervals'][1]*ODF['intervals'][2]
|
||||
deltas = [limit/intervals for limit,intervals in zip(ODF['limits'],ODF['intervals'])]
|
||||
orientations = [None]*nSamples
|
||||
reconstructedODF = [0.0]*nBins
|
||||
reconstructedODF = [0.0]*ODF['nBins']
|
||||
unitInc = 1.0/nSamples
|
||||
|
||||
for j in range(nSamples):
|
||||
|
@ -162,8 +151,8 @@ def MonteCarloBins (ODF,nSamples):
|
|||
while MC > ODF['dV_V'][bin]:
|
||||
countMC += 1
|
||||
MC = maxdV_V*random.random()
|
||||
bin = int(nBins * random.random())
|
||||
Eulers = binAsEulers(bin,ODF['intervals'],deltas,ODF['center'])
|
||||
bin = int(ODF['nBins'] * random.random())
|
||||
Eulers = binAsEulers(bin,ODF['interval'],ODF['delta'],ODF['center'])
|
||||
orientations[j] = '%g\t%g\t%g' %( math.degrees(Eulers[0]),math.degrees(Eulers[1]),math.degrees(Eulers[2]) )
|
||||
reconstructedODF[bin] += unitInc
|
||||
|
||||
|
@ -173,10 +162,8 @@ def MonteCarloBins (ODF,nSamples):
|
|||
def TothVanHoutteSTAT (ODF,nSamples):
|
||||
""" ODF contains 'dV_V' (normalized to 1), 'center', 'intervals', 'limits' (in radians) """
|
||||
|
||||
nBins = ODF['intervals'][0]*ODF['intervals'][1]*ODF['intervals'][2]
|
||||
deltas = [limit/intervals for limit,intervals in zip(ODF['limits'],ODF['intervals'])]
|
||||
orientations = [None]*nSamples
|
||||
reconstructedODF = [0.0]*nBins
|
||||
reconstructedODF = [0.0]*ODF['nBins']
|
||||
unitInc = 1.0/nSamples
|
||||
|
||||
selectors = [random.random() for i in range(nSamples)]
|
||||
|
@ -186,10 +173,10 @@ def TothVanHoutteSTAT (ODF,nSamples):
|
|||
cumdV_V = 0.0
|
||||
countSamples = 0
|
||||
|
||||
for bin in range(nBins) :
|
||||
for bin in range(ODF['nBins']) :
|
||||
cumdV_V += ODF['dV_V'][bin]
|
||||
while indexSelector < nSamples and selectors[indexSelector] < cumdV_V:
|
||||
Eulers = binAsEulers(bin,ODF['intervals'],deltas,ODF['center'])
|
||||
Eulers = binAsEulers(bin,ODF['interval'],ODF['delta'],ODF['center'])
|
||||
orientations[countSamples] = '%g\t%g\t%g' %( math.degrees(Eulers[0]),math.degrees(Eulers[1]),math.degrees(Eulers[2]) )
|
||||
reconstructedODF[bin] += unitInc
|
||||
countSamples += 1
|
||||
|
@ -203,188 +190,176 @@ def TothVanHoutteSTAT (ODF,nSamples):
|
|||
# --------------------------------------------------------------------
|
||||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
identifiers = {
|
||||
'limit': ['phi1','phi','phi2'],
|
||||
'delta': ['phi1','phi','phi2'],
|
||||
}
|
||||
mappings = {
|
||||
'limit': lambda x: math.radians(float(x)),
|
||||
'delta': lambda x: math.radians(float(x)),
|
||||
'origin': lambda x: str(x),
|
||||
}
|
||||
|
||||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||||
Transform linear binned data into Euler angles.
|
||||
""", version=string.replace(scriptID,'\n','\\n')
|
||||
)
|
||||
|
||||
parser.add_option('-f', '--file', dest='file', type='string', metavar = 'string', \
|
||||
help='file name, the input file is generated by the script "OIMlinear2linearODF.py"')
|
||||
parser.add_option('-o', '--output', dest='output', type='string', metavar = 'string', \
|
||||
help='the prefix of output files name.')
|
||||
parser.add_option('-n', '--number', dest='number', type='int', metavar = 'int', \
|
||||
""", version = scriptID)
|
||||
|
||||
parser.add_option('-n', '--number', dest='number', type='int', metavar = 'int',
|
||||
help='the number of orientations needed to be generated, the default is [%default]')
|
||||
parser.add_option('-a','--algorithm', dest='algorithm', type='string', metavar = 'string', \
|
||||
parser.add_option('-a','--algorithm', dest='algorithm', type='string', metavar = 'string',
|
||||
help='''The algorithm adopted, three algorithms are provided,
|
||||
that is:
|
||||
[IA]: direct inversion,
|
||||
[STAT]: Van Houtte,
|
||||
[MC]: Monte Carlo.
|
||||
the default is [%default].''')
|
||||
the default is [%default].''') #make (multiple) choice
|
||||
parser.add_option('-p','--phase', dest='phase', type='int', metavar = 'int',
|
||||
help='phase index to be used [%default]')
|
||||
parser.add_option('--crystallite', dest='crystallite', type='int', metavar = 'int',
|
||||
help='crystallite index to be used [%default]')
|
||||
parser.add_option('-c', '--configuration', dest='config', action='store_true',
|
||||
help='output material configuration [%default]')
|
||||
|
||||
parser.set_defaults(number = 500)
|
||||
parser.set_defaults(output = 'texture')
|
||||
parser.set_defaults(algorithm = 'IA')
|
||||
parser.set_defaults(phase = 1)
|
||||
parser.set_defaults(crystallite = 1)
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
options = parser.parse_args()[0]
|
||||
# check usage
|
||||
if not os.path.exists(options.file):
|
||||
parser.error('binnedODF file does not exist'); sys.exit()
|
||||
|
||||
nameBinnedODF = options.file
|
||||
nameSampledODF = options.output
|
||||
nSamples = options.number
|
||||
methods = [options.algorithm]
|
||||
|
||||
#open binned ODF
|
||||
try:
|
||||
fileBinnedODF = open(nameBinnedODF,'r')
|
||||
except:
|
||||
print 'unable to open binnedODF:', nameBinnedODF;
|
||||
sys.exit(1);
|
||||
|
||||
# process header info
|
||||
ODF = {}
|
||||
ODF['limits'] = [math.radians(float(limit)) for limit in fileBinnedODF.readline().split()[0:3]]
|
||||
ODF['deltas'] = [math.radians(float(delta)) for delta in fileBinnedODF.readline().split()[0:3]]
|
||||
#ODF['intervals'] = [int(interval) for interval in fileBinnedODF.readline().split()[0:3]]
|
||||
ODF['intervals'] = [int(round(limit/delta)) for limit,delta in zip(ODF['limits'],ODF['deltas'])]
|
||||
nBins = ODF['intervals'][0]*ODF['intervals'][1]*ODF['intervals'][2]
|
||||
|
||||
print 'Limit: ', [math.degrees(limit) for limit in ODF['limits']]
|
||||
print 'Delta: ', [math.degrees(delta) for delta in ODF['deltas']]
|
||||
print 'Interval: ', [interval + 1 for interval in ODF['intervals']]
|
||||
|
||||
centering = fileBinnedODF.readline()
|
||||
if re.search('cell',centering.lower()):
|
||||
ODF['center'] = 0.5
|
||||
print 'cell-centered data (offset %g)'%ODF['center']
|
||||
#--- setup file handles ---------------------------------------------------------------------------
|
||||
files = []
|
||||
if filenames == []:
|
||||
files.append({'name':'STDIN',
|
||||
'input':sys.stdin,
|
||||
'output':sys.stdout,
|
||||
'croak':sys.stderr,
|
||||
})
|
||||
else:
|
||||
ODF['center'] = 0.0
|
||||
print 'vertex-centered data (offset %g)'%ODF['center']
|
||||
for name in filenames:
|
||||
if os.path.exists(name):
|
||||
files.append({'name':name,
|
||||
'input':open(name),
|
||||
'output':open(name+'_tmp','w'),
|
||||
'croak':sys.stdout,
|
||||
})
|
||||
|
||||
fileBinnedODF.readline() # skip blank delimiter
|
||||
#--- loop over input files ------------------------------------------------------------------------
|
||||
for file in files:
|
||||
file['croak'].write('\033[1m' + scriptName + '\033[0m: ' + (file['name'] if file['name'] != 'STDIN' else '') + '\n')
|
||||
|
||||
# read linear binned data
|
||||
linesBinnedODF = fileBinnedODF.readlines()
|
||||
fileBinnedODF.close()
|
||||
ODF = {
|
||||
'limit': np.empty(3,'d'),
|
||||
'delta': np.empty(3,'d'),
|
||||
'interval':np.empty(3,'i'),
|
||||
'origin': ''
|
||||
}
|
||||
|
||||
if len(linesBinnedODF) != nBins:
|
||||
print 'expecting', nBins, 'values but got', len(linesBinnedODF)
|
||||
sys.exit(1)
|
||||
table = damask.ASCIItable(file['input'],file['output'],buffered = False)
|
||||
table.head_read()
|
||||
|
||||
# build binnedODF array
|
||||
print 'reading',nBins,'values'
|
||||
sumdV_V = 0.0
|
||||
ODF['dV_V'] = [None]*nBins
|
||||
ODF['nNonZero'] = 0
|
||||
dg = ODF['deltas'][0]*2*math.sin(ODF['deltas'][1]/2.0)*ODF['deltas'][2]
|
||||
for bin in range(nBins):
|
||||
ODF['dV_V'][bin] = \
|
||||
max(0.0,float(linesBinnedODF[bin])) * dg * \
|
||||
math.sin(((bin//ODF['intervals'][2])%ODF['intervals'][1]+ODF['center'])*ODF['deltas'][1])
|
||||
if ODF['dV_V'][bin] > 0.0:
|
||||
sumdV_V += ODF['dV_V'][bin]
|
||||
ODF['nNonZero'] += 1
|
||||
for header in table.info:
|
||||
headitems = map(str.lower,header.split())
|
||||
if len(headitems) == 0: continue
|
||||
if headitems[0] in mappings.keys():
|
||||
if headitems[0] in identifiers.keys():
|
||||
for i in xrange(len(identifiers[headitems[0]])):
|
||||
ODF[headitems[0]][i] = \
|
||||
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
|
||||
else:
|
||||
ODF[headitems[0]] = mappings[headitems[0]](headitems[1])
|
||||
|
||||
for bin in range(nBins): ODF['dV_V'][bin] /= sumdV_V # normalize dV/V
|
||||
ODF['interval'] = np.array([int(round(limit/delta)) for limit,delta in zip(ODF['limit'],ODF['delta'])])
|
||||
ODF['nBins'] = ODF['interval'].prod()
|
||||
|
||||
print 'non-zero fraction:', float(ODF['nNonZero'])/nBins,'(%i/%i)'%(ODF['nNonZero'],nBins)
|
||||
print 'Volume integral of ODF:', sumdV_V
|
||||
print 'Reference Integral:', ODF['limits'][0]*ODF['limits'][2]*(1-math.cos(ODF['limits'][1]))
|
||||
if re.search('boundary',ODF['origin'].lower()):
|
||||
ODF['center'] = 0.5
|
||||
else:
|
||||
ODF['center'] = 0.0
|
||||
|
||||
# call methods
|
||||
Functions = {'IA': 'directInversion', 'STAT': 'TothVanHoutteSTAT', 'MC': 'MonteCarloBins'}
|
||||
Orientations = {}
|
||||
ReconstructedODF = {}
|
||||
for method in methods:
|
||||
Orientations[method], ReconstructedODF[method] = (globals()[Functions[method]])(ODF,nSamples)
|
||||
binnedODF=table.data_readArray([table.labels.index('intensity')])
|
||||
|
||||
# calculate accuracy of sample
|
||||
squaredDiff = {}
|
||||
squaredRelDiff = {}
|
||||
mutualProd = {}
|
||||
indivSum = {}
|
||||
indivSquaredSum = {}
|
||||
for method in ['orig']+methods:
|
||||
squaredDiff[method] = 0.0
|
||||
squaredRelDiff[method] = 0.0
|
||||
mutualProd[method] = 0.0
|
||||
indivSum[method] = 0.0
|
||||
indivSquaredSum[method] = 0.0
|
||||
if binnedODF[0] != ODF['nBins']:
|
||||
print 'expecting', ODF['nBins'], 'values but got', len(linesBinnedODF)
|
||||
sys.exit(1)
|
||||
|
||||
for bin in range(nBins):
|
||||
for method in methods:
|
||||
squaredDiff[method] += (ODF['dV_V'][bin] - ReconstructedODF[method][bin])**2
|
||||
# build binnedODF array
|
||||
sumdV_V = 0.0
|
||||
ODF['dV_V'] = [None]*ODF['nBins']
|
||||
ODF['nNonZero'] = 0
|
||||
dg = ODF['delta'][0]*2*math.sin(ODF['delta'][1]/2.0)*ODF['delta'][2]
|
||||
for bin in range(ODF['nBins']):
|
||||
ODF['dV_V'][bin] = \
|
||||
max(0.0,table.data[bin,0]) * dg * \
|
||||
math.sin(((bin//ODF['interval'][2])%ODF['interval'][1]+ODF['center'])*ODF['delta'][1])
|
||||
if ODF['dV_V'][bin] > 0.0:
|
||||
squaredRelDiff[method] += (ODF['dV_V'][bin] - ReconstructedODF[method][bin])**2/ODF['dV_V'][bin]**2
|
||||
mutualProd[method] += ODF['dV_V'][bin]*ReconstructedODF[method][bin]
|
||||
indivSum[method] += ReconstructedODF[method][bin]
|
||||
indivSquaredSum[method] += ReconstructedODF[method][bin]**2
|
||||
sumdV_V += ODF['dV_V'][bin]
|
||||
ODF['nNonZero'] += 1
|
||||
|
||||
for bin in range(ODF['nBins']): ODF['dV_V'][bin] /= sumdV_V # normalize dV/V
|
||||
|
||||
print 'non-zero fraction:', float(ODF['nNonZero'])/ODF['nBins'],'(%i/%i)'%(ODF['nNonZero'],ODF['nBins'])
|
||||
print 'Volume integral of ODF:', sumdV_V
|
||||
print 'Reference Integral:', ODF['limit'][0]*ODF['limit'][2]*(1-math.cos(ODF['limit'][1]))
|
||||
|
||||
# call methods
|
||||
Functions = {'IA': 'directInversion', 'STAT': 'TothVanHoutteSTAT', 'MC': 'MonteCarloBins'}
|
||||
method = Functions[options.algorithm]
|
||||
|
||||
Orientations, ReconstructedODF = (globals()[method])(ODF,nSamples)
|
||||
|
||||
# calculate accuracy of sample
|
||||
squaredDiff = {'orig':0.0,method:0.0}
|
||||
squaredRelDiff = {'orig':0.0,method:0.0}
|
||||
mutualProd = {'orig':0.0,method:0.0}
|
||||
indivSum = {'orig':0.0,method:0.0}
|
||||
indivSquaredSum = {'orig':0.0,method:0.0}
|
||||
|
||||
for bin in range(ODF['nBins']):
|
||||
squaredDiff[method] += (ODF['dV_V'][bin] - ReconstructedODF[bin])**2
|
||||
if ODF['dV_V'][bin] > 0.0:
|
||||
squaredRelDiff[method] += (ODF['dV_V'][bin] - ReconstructedODF[bin])**2/ODF['dV_V'][bin]**2
|
||||
mutualProd[method] += ODF['dV_V'][bin]*ReconstructedODF[bin]
|
||||
indivSum[method] += ReconstructedODF[bin]
|
||||
indivSquaredSum[method] += ReconstructedODF[bin]**2
|
||||
indivSum['orig'] += ODF['dV_V'][bin]
|
||||
indivSquaredSum['orig'] += ODF['dV_V'][bin]**2
|
||||
|
||||
print 'sqrt(N*)RMSD of ODFs:\t', [math.sqrt(nSamples*squaredDiff[method]) for method in methods]
|
||||
print 'RMSrD of ODFs:\t', [math.sqrt(squaredRelDiff[method]) for method in methods]
|
||||
print 'rMSD of ODFs:\t', [squaredDiff[method]/indivSquaredSum['orig'] for method in methods]
|
||||
#print 'correlation slope:\t', [(nBins*mutualProd[method]-indivSum['orig']*indivSum[method])/(nBins*indivSquaredSum['orig']-indivSum['orig']**2) for method in ('IA','STAT','MC')]
|
||||
#print 'correlation confidence:\t', [(mutualProd[method]-indivSum['orig']*indivSum[method]/nBins)/\
|
||||
# (nBins*math.sqrt((indivSquaredSum['orig']/nBins-(indivSum['orig']/nBins)**2)*(indivSquaredSum[method]/nBins-(indivSum[method]/nBins)**2))) for method in ('IA','STAT','MC')]
|
||||
print 'nNonZero correlation slope:\t', [(ODF['nNonZero']*mutualProd[method]-indivSum['orig']*indivSum[method])/(ODF['nNonZero']*indivSquaredSum['orig']-indivSum['orig']**2) for method in methods]
|
||||
print 'nNonZero correlation confidence:\t', [(mutualProd[method]-indivSum['orig']*indivSum[method]/ODF['nNonZero'])/\
|
||||
(ODF['nNonZero']*math.sqrt((indivSquaredSum['orig']/ODF['nNonZero']-(indivSum['orig']/ODF['nNonZero'])**2)*(indivSquaredSum[method]/ODF['nNonZero']-(indivSum[method]/ODF['nNonZero'])**2))) for method in methods]
|
||||
print 'sqrt(N*)RMSD of ODFs:\t', math.sqrt(nSamples*squaredDiff[method])
|
||||
print 'RMSrD of ODFs:\t', math.sqrt(squaredRelDiff[method])
|
||||
print 'rMSD of ODFs:\t', squaredDiff[method]/indivSquaredSum['orig']
|
||||
print 'nNonZero correlation slope:\t', (ODF['nNonZero']*mutualProd[method]-indivSum['orig']*indivSum[method])/\
|
||||
(ODF['nNonZero']*indivSquaredSum['orig']-indivSum['orig']**2)
|
||||
print 'nNonZero correlation confidence:\t',\
|
||||
(mutualProd[method]-indivSum['orig']*indivSum[method]/ODF['nNonZero'])/\
|
||||
(ODF['nNonZero']*math.sqrt((indivSquaredSum['orig']/ODF['nNonZero']-(indivSum['orig']/ODF['nNonZero'])**2)*\
|
||||
(indivSquaredSum[method]/ODF['nNonZero']-(indivSum[method]/ODF['nNonZero'])**2)))
|
||||
|
||||
for method in methods:
|
||||
if method == 'IA' and nSamples < ODF['nNonZero']:
|
||||
strOpt = '(%i)'%ODF['nNonZero']
|
||||
else:
|
||||
strOpt = ''
|
||||
try:
|
||||
fileSampledODF = open(nameSampledODF+'.'+method+'sampled_'+str(nSamples)+strOpt, 'w')
|
||||
fileSampledODF.write('%i\n'%nSamples)
|
||||
fileSampledODF.write('\n'.join(Orientations[method])+'\n')
|
||||
fileSampledODF.close()
|
||||
except:
|
||||
print 'unable to write sampledODF:', nameSampledODF+'.'+method+'sampled_'+str(nSamples)+strOpt
|
||||
|
||||
try:
|
||||
fileRegressionODF = open(nameSampledODF+'.'+method+'regression_'+str(nSamples)+strOpt, 'w')
|
||||
fileRegressionODF.write('\n'.join([a+'\t'+b for (a,b) in zip(map(str,ReconstructedODF[method]),map(str,ODF['dV_V']))])+'\n')
|
||||
fileRegressionODF.close()
|
||||
except:
|
||||
print 'unable to write RegressionODF:', nameSampledODF+'.'+method+'regression_'+str(nSamples)+strOpt
|
||||
formatwidth = 1
|
||||
file['output'].write('#-------------------#')
|
||||
file['output'].write('\n<microstructure>\n')
|
||||
file['output'].write('#-------------------#\n')
|
||||
|
||||
if options.config:
|
||||
try:
|
||||
fileConfig = open(nameSampledODF+'.'+method+str(nSamples)+'.config', 'w') # write config file
|
||||
formatwidth = 1
|
||||
fileConfig.write('#-------------------#')
|
||||
fileConfig.write('\n<microstructure>\n')
|
||||
fileConfig.write('#-------------------#\n')
|
||||
for i,ID in enumerate(xrange(nSamples)):
|
||||
file['output'].write('[Grain%s]\n'%(str(ID+1).zfill(formatwidth)) + \
|
||||
'crystallite %i\n'%options.crystallite + \
|
||||
'(constituent) phase %i texture %s fraction 1.0\n'%(options.phase,str(ID+1).rjust(formatwidth)))
|
||||
|
||||
for i,ID in enumerate(xrange(nSamples)):
|
||||
fileConfig.write('[Grain%s]\n'%(str(ID+1).zfill(formatwidth)) + \
|
||||
'crystallite %i\n'%options.crystallite + \
|
||||
'(constituent) phase %i texture %s fraction 1.0\n'%(options.phase,str(ID+1).rjust(formatwidth)))
|
||||
file['output'].write('\n#-------------------#')
|
||||
file['output'].write('\n<texture>\n')
|
||||
file['output'].write('#-------------------#\n')
|
||||
for ID in xrange(nSamples):
|
||||
eulers = re.split(r'[\t]', Orientations[ID].strip())
|
||||
|
||||
fileConfig.write('\n#-------------------#')
|
||||
fileConfig.write('\n<texture>\n')
|
||||
fileConfig.write('#-------------------#\n')
|
||||
for ID in xrange(nSamples):
|
||||
eulers = re.split(r'[\t]', Orientations[method][ID].strip())
|
||||
|
||||
fileConfig.write('[Grain%s]\n'%(str(ID+1).zfill(formatwidth)) + \
|
||||
'(gauss) phi1 %10.5f Phi %10.5f phi2 %10.6f scatter 0.0 fraction 1.0\n'\
|
||||
%(float(eulers[0]),float(eulers[1]),float(eulers[2])))
|
||||
fileConfig.close()
|
||||
except:
|
||||
print 'unable to write material.config file:', nameSampledODF+'.'+method+str(nSamples)+'.config'
|
||||
file['output'].write('[Grain%s]\n'%(str(ID+1).zfill(formatwidth)) + \
|
||||
'(gauss) phi1 %10.5f Phi %10.5f phi2 %10.6f scatter 0.0 fraction 1.0\n'\
|
||||
%(float(eulers[0]),float(eulers[1]),float(eulers[2])))
|
||||
#--- output finalization --------------------------------------------------------------------------
|
||||
if file['name'] != 'STDIN':
|
||||
file['output'].close()
|
||||
os.rename(file['name']+'_tmp',
|
||||
os.path.splitext(file['name'])[0] +'_'+method+'%s'%('_material.config'))
|
||||
|
|
Loading…
Reference in New Issue