avoid global variables

This commit is contained in:
Martin Diehl 2020-12-29 00:13:49 +01:00
parent f08fbbaaa2
commit f560b33db0
2 changed files with 65 additions and 54 deletions

View File

@ -49,8 +49,6 @@ module constitutive
real(pReal), dimension(:,:,:,:,:), allocatable :: &
crystallite_F0, & !< def grad at start of FE inc
crystallite_Fe, & !< current "elastic" def grad (end of converged time step)
crystallite_subFp0,& !< plastic def grad at start of crystallite inc
crystallite_subFi0,& !< intermediate def grad at start of crystallite inc
crystallite_Lp0, & !< plastic velocitiy grad at start of FE inc
crystallite_partitionedLp0, & !< plastic velocity grad at start of homog inc
crystallite_S0, & !< 2nd Piola-Kirchhoff stress vector at start of FE inc
@ -748,7 +746,6 @@ subroutine constitutive_allocateState(state, &
allocate(state%atol (sizeState), source=0.0_pReal)
allocate(state%state0 (sizeState,Nconstituents), source=0.0_pReal)
allocate(state%partitionedState0(sizeState,Nconstituents), source=0.0_pReal)
allocate(state%subState0 (sizeState,Nconstituents), source=0.0_pReal)
allocate(state%state (sizeState,Nconstituents), source=0.0_pReal)
allocate(state%dotState (sizeDotState,Nconstituents), source=0.0_pReal)
@ -875,7 +872,6 @@ subroutine crystallite_init
crystallite_partitionedLp0, &
crystallite_S,crystallite_P, &
crystallite_Fe,crystallite_Lp, &
crystallite_subFp0,crystallite_subFi0, &
source = crystallite_F)
allocate(crystallite_subdt(cMax,iMax,eMax),source=0.0_pReal)
@ -936,6 +932,9 @@ subroutine crystallite_init
allocate(constitutive_mech_Li(ph)%data(3,3,Nconstituents))
allocate(constitutive_mech_Li0(ph)%data(3,3,Nconstituents))
allocate(constitutive_mech_partitionedLi0(ph)%data(3,3,Nconstituents))
do so = 1, phase_Nsources(ph)
allocate(sourceState(ph)%p(so)%subState0,source=sourceState(ph)%p(so)%state0) ! ToDo: hack
enddo
enddo
print'(a42,1x,i10)', ' # of elements: ', eMax
@ -1095,8 +1094,8 @@ function crystallite_stressTangent(co,ip,el) result(dPdF)
invFp = math_inv33(constitutive_mech_Fp(ph)%data(1:3,1:3,me))
invFi = math_inv33(constitutive_mech_Fi(ph)%data(1:3,1:3,me))
invSubFp0 = math_inv33(crystallite_subFp0(1:3,1:3,co,ip,el))
invSubFi0 = math_inv33(crystallite_subFi0(1:3,1:3,co,ip,el))
invSubFp0 = math_inv33(constitutive_mech_partitionedFp0(ph)%data(1:3,1:3,me))
invSubFi0 = math_inv33(constitutive_mech_partitionedFi0(ph)%data(1:3,1:3,me))
if (sum(abs(dLidS)) < tol_math_check) then
dFidS = 0.0_pReal

View File

@ -737,9 +737,9 @@ end subroutine mech_results
!> @brief calculation of stress (P) with time integration based on a residuum in Lp and
!> intermediate acceleration of the Newton-Raphson correction
!--------------------------------------------------------------------------------------------------
function integrateStress(F,Delta_t,co,ip,el) result(broken)
function integrateStress(F,subFp0,subFi0,Delta_t,co,ip,el) result(broken)
real(pReal), dimension(3,3), intent(in) :: F
real(pReal), dimension(3,3), intent(in) :: F,subFp0,subFi0
real(pReal), intent(in) :: Delta_t
integer, intent(in):: el, & ! element index
ip, & ! integration point index
@ -808,9 +808,9 @@ function integrateStress(F,Delta_t,co,ip,el) result(broken)
Lpguess = crystallite_Lp(1:3,1:3,co,ip,el) ! take as first guess
Liguess = constitutive_mech_Li(ph)%data(1:3,1:3,me) ! take as first guess
call math_invert33(invFp_current,devNull,error,crystallite_subFp0(1:3,1:3,co,ip,el))
call math_invert33(invFp_current,devNull,error,subFp0)
if (error) return ! error
call math_invert33(invFi_current,devNull,error,crystallite_subFi0(1:3,1:3,co,ip,el))
call math_invert33(invFi_current,devNull,error,subFi0)
if (error) return ! error
A = matmul(F,invFp_current) ! intermediate tensor needed later to calculate dFe_dLp
@ -951,9 +951,10 @@ end function integrateStress
!> @brief integrate stress, state with adaptive 1st order explicit Euler method
!> using Fixed Point Iteration to adapt the stepsize
!--------------------------------------------------------------------------------------------------
function integrateStateFPI(F_0,F,Delta_t,co,ip,el) result(broken)
function integrateStateFPI(F_0,F,subFp0,subFi0,subState0,Delta_t,co,ip,el) result(broken)
real(pReal), intent(in),dimension(3,3) :: F_0,F
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
real(pReal), intent(in),dimension(:) :: subState0
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: &
el, & !< element index in element loop
@ -982,7 +983,7 @@ function integrateStateFPI(F_0,F,Delta_t,co,ip,el) result(broken)
if(broken) return
sizeDotState = plasticState(ph)%sizeDotState
plasticState(ph)%state(1:sizeDotState,me) = plasticState(ph)%subState0(1:sizeDotState,me) &
plasticState(ph)%state(1:sizeDotState,me) = subState0 &
+ plasticState(ph)%dotState (1:sizeDotState,me) * Delta_t
dotState(1:sizeDotState,2) = 0.0_pReal
@ -991,7 +992,7 @@ function integrateStateFPI(F_0,F,Delta_t,co,ip,el) result(broken)
if(nIterationState > 1) dotState(1:sizeDotState,2) = dotState(1:sizeDotState,1)
dotState(1:sizeDotState,1) = plasticState(ph)%dotState(:,me)
broken = integrateStress(F,Delta_t,co,ip,el)
broken = integrateStress(F,subFp0,subFi0,Delta_t,co,ip,el)
if(broken) exit iteration
broken = mech_collectDotState(Delta_t, co,ip,el,ph,me)
@ -1002,7 +1003,7 @@ function integrateStateFPI(F_0,F,Delta_t,co,ip,el) result(broken)
plasticState(ph)%dotState(:,me) = plasticState(ph)%dotState(:,me) * zeta &
+ dotState(1:sizeDotState,1) * (1.0_pReal - zeta)
r(1:sizeDotState) = plasticState(ph)%state (1:sizeDotState,me) &
- plasticState(ph)%subState0(1:sizeDotState,me) &
- subState0 &
- plasticState(ph)%dotState (1:sizeDotState,me) * Delta_t
plasticState(ph)%state(1:sizeDotState,me) = plasticState(ph)%state(1:sizeDotState,me) &
- r(1:sizeDotState)
@ -1042,9 +1043,10 @@ end function integrateStateFPI
!--------------------------------------------------------------------------------------------------
!> @brief integrate state with 1st order explicit Euler method
!--------------------------------------------------------------------------------------------------
function integrateStateEuler(F_0,F,Delta_t,co,ip,el) result(broken)
function integrateStateEuler(F_0,F,subFp0,subFi0,subState0,Delta_t,co,ip,el) result(broken)
real(pReal), intent(in),dimension(3,3) :: F_0,F
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
real(pReal), intent(in),dimension(:) :: subState0
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: &
el, & !< element index in element loop
@ -1066,14 +1068,14 @@ function integrateStateEuler(F_0,F,Delta_t,co,ip,el) result(broken)
if(broken) return
sizeDotState = plasticState(ph)%sizeDotState
plasticState(ph)%state(1:sizeDotState,me) = plasticState(ph)%subState0(1:sizeDotState,me) &
plasticState(ph)%state(1:sizeDotState,me) = subState0 &
+ plasticState(ph)%dotState(1:sizeDotState,me) * Delta_t
broken = constitutive_deltaState(crystallite_S(1:3,1:3,co,ip,el), &
constitutive_mech_Fi(ph)%data(1:3,1:3,me),co,ip,el,ph,me)
if(broken) return
broken = integrateStress(F,Delta_t,co,ip,el)
broken = integrateStress(F,subFp0,subFi0,Delta_t,co,ip,el)
end function integrateStateEuler
@ -1081,9 +1083,10 @@ end function integrateStateEuler
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with 1st order Euler method with adaptive step size
!--------------------------------------------------------------------------------------------------
function integrateStateAdaptiveEuler(F_0,F,Delta_t,co,ip,el) result(broken)
function integrateStateAdaptiveEuler(F_0,F,subFp0,subFi0,subState0,Delta_t,co,ip,el) result(broken)
real(pReal), intent(in),dimension(3,3) :: F_0,F
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
real(pReal), intent(in),dimension(:) :: subState0
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: &
el, & !< element index in element loop
@ -1108,14 +1111,14 @@ function integrateStateAdaptiveEuler(F_0,F,Delta_t,co,ip,el) result(broken)
sizeDotState = plasticState(ph)%sizeDotState
residuum_plastic(1:sizeDotState) = - plasticState(ph)%dotstate(1:sizeDotState,me) * 0.5_pReal * Delta_t
plasticState(ph)%state(1:sizeDotState,me) = plasticState(ph)%subState0(1:sizeDotState,me) &
plasticState(ph)%state(1:sizeDotState,me) = subState0 &
+ plasticState(ph)%dotstate(1:sizeDotState,me) * Delta_t
broken = constitutive_deltaState(crystallite_S(1:3,1:3,co,ip,el), &
constitutive_mech_Fi(ph)%data(1:3,1:3,me),co,ip,el,ph,me)
if(broken) return
broken = integrateStress(F,Delta_t,co,ip,el)
broken = integrateStress(F,subFp0,subFi0,Delta_t,co,ip,el)
if(broken) return
broken = mech_collectDotState(Delta_t, co,ip,el,ph,me)
@ -1131,9 +1134,10 @@ end function integrateStateAdaptiveEuler
!---------------------------------------------------------------------------------------------------
!> @brief Integrate state (including stress integration) with the classic Runge Kutta method
!---------------------------------------------------------------------------------------------------
function integrateStateRK4(F_0,F,Delta_t,co,ip,el) result(broken)
function integrateStateRK4(F_0,F,subFp0,subFi0,subState0,Delta_t,co,ip,el) result(broken)
real(pReal), intent(in),dimension(3,3) :: F_0,F
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
real(pReal), intent(in),dimension(:) :: subState0
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: co,ip,el
logical :: broken
@ -1150,7 +1154,7 @@ function integrateStateRK4(F_0,F,Delta_t,co,ip,el) result(broken)
B = [1.0_pReal/6.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/6.0_pReal]
broken = integrateStateRK(F_0,F,Delta_t,co,ip,el,A,B,C)
broken = integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,co,ip,el,A,B,C)
end function integrateStateRK4
@ -1158,9 +1162,10 @@ end function integrateStateRK4
!---------------------------------------------------------------------------------------------------
!> @brief Integrate state (including stress integration) with the Cash-Carp method
!---------------------------------------------------------------------------------------------------
function integrateStateRKCK45(F_0,F,Delta_t,co,ip,el) result(broken)
function integrateStateRKCK45(F_0,F,subFp0,subFi0,subState0,Delta_t,co,ip,el) result(broken)
real(pReal), intent(in),dimension(3,3) :: F_0,F
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
real(pReal), intent(in),dimension(:) :: subState0
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: co,ip,el
logical :: broken
@ -1184,7 +1189,7 @@ function integrateStateRKCK45(F_0,F,Delta_t,co,ip,el) result(broken)
13525.0_pReal/55296.0_pReal, 277.0_pReal/14336.0_pReal, 1._pReal/4._pReal]
broken = integrateStateRK(F_0,F,Delta_t,co,ip,el,A,B,C,DB)
broken = integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,co,ip,el,A,B,C,DB)
end function integrateStateRKCK45
@ -1193,9 +1198,10 @@ end function integrateStateRKCK45
!> @brief Integrate state (including stress integration) with an explicit Runge-Kutta method or an
!! embedded explicit Runge-Kutta method
!--------------------------------------------------------------------------------------------------
function integrateStateRK(F_0,F,Delta_t,co,ip,el,A,B,C,DB) result(broken)
function integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,co,ip,el,A,B,C,DB) result(broken)
real(pReal), intent(in),dimension(3,3) :: F_0,F
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
real(pReal), intent(in),dimension(:) :: subState0
real(pReal), intent(in) :: Delta_t
real(pReal), dimension(:,:), intent(in) :: A
real(pReal), dimension(:), intent(in) :: B, C
@ -1233,10 +1239,10 @@ function integrateStateRK(F_0,F,Delta_t,co,ip,el,A,B,C,DB) result(broken)
+ A(n,stage) * plastic_RKdotState(1:sizeDotState,n)
enddo
plasticState(ph)%state(1:sizeDotState,me) = plasticState(ph)%subState0(1:sizeDotState,me) &
plasticState(ph)%state(1:sizeDotState,me) = subState0 &
+ plasticState(ph)%dotState (1:sizeDotState,me) * Delta_t
broken = integrateStress(F_0 + (F - F_0) * Delta_t * C(stage),Delta_t * C(stage),co,ip,el)
broken = integrateStress(F_0 + (F - F_0) * Delta_t * C(stage),subFp0,subFi0,Delta_t * C(stage),co,ip,el)
if(broken) exit
broken = mech_collectDotState(Delta_t*C(stage),co,ip,el,ph,me)
@ -1248,7 +1254,7 @@ function integrateStateRK(F_0,F,Delta_t,co,ip,el,A,B,C,DB) result(broken)
plastic_RKdotState(1:sizeDotState,size(B)) = plasticState (ph)%dotState(:,me)
plasticState(ph)%dotState(:,me) = matmul(plastic_RKdotState(1:sizeDotState,1:size(B)),B)
plasticState(ph)%state(1:sizeDotState,me) = plasticState(ph)%subState0(1:sizeDotState,me) &
plasticState(ph)%state(1:sizeDotState,me) = subState0 &
+ plasticState(ph)%dotState (1:sizeDotState,me) * Delta_t
if(present(DB)) &
@ -1262,7 +1268,7 @@ function integrateStateRK(F_0,F,Delta_t,co,ip,el,A,B,C,DB) result(broken)
constitutive_mech_Fi(ph)%data(1:3,1:3,me),co,ip,el,ph,me)
if(broken) return
broken = integrateStress(F,Delta_t,co,ip,el)
broken = integrateStress(F,subFp0,subFi0,Delta_t,co,ip,el)
end function integrateStateRK
@ -1487,33 +1493,40 @@ module function crystallite_stress(dt,co,ip,el) result(converged_)
formerSubStep
integer :: &
NiterationCrystallite, & ! number of iterations in crystallite loop
so, ph, me
so, ph, me, sizeDotState
logical :: todo
real(pReal) :: subFrac,subStep
real(pReal), dimension(3,3) :: &
subLp0, & !< plastic velocity grad at start of crystallite inc
subLi0, & !< intermediate velocity grad at start of crystallite inc
subFp0, &
subFi0, &
subLp0, &
subLi0, &
subF0, &
subF
real(pReal), dimension(:), allocatable :: subState0
ph = material_phaseAt(co,el)
me = material_phaseMemberAt(co,ip,el)
sizeDotState = plasticState(ph)%sizeDotState
subLi0 = constitutive_mech_partitionedLi0(ph)%data(1:3,1:3,me)
subLp0 = crystallite_partitionedLp0(1:3,1:3,co,ip,el)
subState0 = plasticState(ph)%partitionedState0(:,me)
plasticState(ph)%subState0(:,me) = plasticState(ph)%partitionedState0(:,me)
do so = 1, phase_Nsources(ph)
sourceState(ph)%p(so)%subState0(:,me) = sourceState(ph)%p(so)%partitionedState0(:,me)
enddo
crystallite_subFp0(1:3,1:3,co,ip,el) = constitutive_mech_partitionedFp0(ph)%data(1:3,1:3,me)
crystallite_subFi0(1:3,1:3,co,ip,el) = constitutive_mech_partitionedFi0(ph)%data(1:3,1:3,me)
subFp0 = constitutive_mech_partitionedFp0(ph)%data(1:3,1:3,me)
subFi0 = constitutive_mech_partitionedFi0(ph)%data(1:3,1:3,me)
subF0 = crystallite_partitionedF0(1:3,1:3,co,ip,el)
subFrac = 0.0_pReal
subStep = 1.0_pReal/num%subStepSizeCryst
todo = .true.
converged_ = .false. ! pretend failed step of 1/subStepSizeCryst
crystallite_subdt(co,ip,el) = dt
todo = .true.
NiterationCrystallite = 0
cutbackLooping: do while (todo)
@ -1532,9 +1545,9 @@ module function crystallite_stress(dt,co,ip,el) result(converged_)
subF0 = subF
subLp0 = crystallite_Lp (1:3,1:3,co,ip,el)
subLi0 = constitutive_mech_Li(ph)%data(1:3,1:3,me)
crystallite_subFp0(1:3,1:3,co,ip,el) = constitutive_mech_Fp(ph)%data(1:3,1:3,me)
crystallite_subFi0(1:3,1:3,co,ip,el) = constitutive_mech_Fi(ph)%data(1:3,1:3,me)
plasticState(ph)%subState0(:,me) = plasticState(ph)%state(:,me)
subFp0 = constitutive_mech_Fp(ph)%data(1:3,1:3,me)
subFi0 = constitutive_mech_Fi(ph)%data(1:3,1:3,me)
subState0 = plasticState(ph)%state(:,me)
do so = 1, phase_Nsources(ph)
sourceState(ph)%p(so)%subState0(:,me) = sourceState(ph)%p(so)%state(:,me)
enddo
@ -1543,14 +1556,14 @@ module function crystallite_stress(dt,co,ip,el) result(converged_)
! cut back (reduced time and restore)
else
subStep = num%subStepSizeCryst * subStep
constitutive_mech_Fp(ph)%data(1:3,1:3,me) = crystallite_subFp0(1:3,1:3,co,ip,el)
constitutive_mech_Fi(ph)%data(1:3,1:3,me) = crystallite_subFi0(1:3,1:3,co,ip,el)
constitutive_mech_Fp(ph)%data(1:3,1:3,me) = subFp0
constitutive_mech_Fi(ph)%data(1:3,1:3,me) = subFi0
crystallite_S (1:3,1:3,co,ip,el) = crystallite_S0 (1:3,1:3,co,ip,el)
if (subStep < 1.0_pReal) then ! actual (not initial) cutback
crystallite_Lp (1:3,1:3,co,ip,el) = subLp0
constitutive_mech_Li(ph)%data(1:3,1:3,me) = subLi0
endif
plasticState(ph)%state(:,me) = plasticState(ph)%subState0(:,me)
plasticState(ph)%state(:,me) = subState0
do so = 1, phase_Nsources(ph)
sourceState(ph)%p(so)%state(:,me) = sourceState(ph)%p(so)%subState0(:,me)
enddo
@ -1565,8 +1578,7 @@ module function crystallite_stress(dt,co,ip,el) result(converged_)
+ subStep * (crystallite_F(1:3,1:3,co,ip,el) - crystallite_partitionedF0(1:3,1:3,co,ip,el))
crystallite_Fe(1:3,1:3,co,ip,el) = matmul(subF,math_inv33(matmul(constitutive_mech_Fi(ph)%data(1:3,1:3,me), &
constitutive_mech_Fp(ph)%data(1:3,1:3,me))))
crystallite_subdt(co,ip,el) = subStep * dt
converged_ = .not. integrateState(subF0,subF,subStep * dt,co,ip,el)
converged_ = .not. integrateState(subF0,subF,subFp0,subFi0,subState0(1:sizeDotState),subStep * dt,co,ip,el)
converged_ = converged_ .and. .not. integrateSourceState(subStep * dt,co,ip,el)
endif