new script that generates ang files for slices through vtk data set

This commit is contained in:
Christoph Kords 2013-05-06 16:37:54 +00:00
parent 5a8b4515fd
commit f5482ffbf4
2 changed files with 363 additions and 0 deletions

362
processing/post/vtk2ang.py Executable file
View File

@ -0,0 +1,362 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
from optparse import OptionParser, Option
from vtk import *
import os,numpy,string,math
# -----------------------------
def getHeader(filename,sizeFastIndex,sizeSlowIndex,stepsize):
# -----------------------------
# returns header for ang file
#
return '\n'.join([ \
'# TEM_PIXperUM 1.000000', \
'# x-star 1.000000', \
'# y-star 1.000000', \
'# z-star 1.000000', \
'# WorkingDistance 18.000000', \
'#', \
'# Phase 1', \
'# MaterialName XX', \
'# Formula XX', \
'# Info', \
'# Symmetry 43', \
'# LatticeConstants 2.870 2.870 2.870 90.000 90.000 90.000', \
'# NumberFamilies 1', \
'# hklFamilies 1 1 0 1 0.000000 1', \
'# Categories 0 0 0 0 0 ', \
'#', \
'# GRID: SqrGrid', \
'# XSTEP: ' + str(stepsize), \
'# YSTEP: ' + str(stepsize), \
'# NCOLS_ODD: ' + str(sizeFastIndex), \
'# NCOLS_EVEN: ' + str(sizeFastIndex), \
'# NROWS: ' + str(sizeSlowIndex), \
'#', \
'# OPERATOR: ' + string.replace('$Id$','\n','\\n'), \
'#', \
'# SAMPLEID: %s'%filename, \
'#', \
'# SCANID: ', \
'#', \
]) + '\n'
# -----------------------------
def positiveRadians(angle):
# -----------------------------
# returns positive angle in radians
# gets angle in degrees
angle = math.radians(float(angle))
while angle < 0.0:
angle += 2.0 * math.pi
return angle
# -----------------------------
def getDataLine(angles,position,validData=True):
# -----------------------------
# returns string of one line in ang file
# convention in ang file: y coordinate comes first and is fastest index
info = {True: (9999.9, 1.0, 0,99999,0.0),
False: ( -1.0,-1.0,-1, -1,1.0)}
return '%9.5f %9.5f %9.5f %12.5f %12.5f %6.1f %6.3f %2i %6i %6.3f \n'%(tuple(map(positiveRadians,angles))+tuple(position[1::-1])+info[validData])
# --------------------------------------------------------------------
# MAIN FUNCTION STARTS HERE
# --------------------------------------------------------------------
parser = OptionParser(usage='%prog options [file[s]]', description = """
Builds a ang files from a vtk file.
""" + string.replace('$Id$','\n','\\n')
)
parser.add_option('--disp','--displacement',dest='dispLabel', type='string', \
help='label of displacements [%default]')
parser.add_option('--euler', dest='eulerLabel', type='string', nargs=3, \
help='labels of euler angles [%default]')
parser.add_option('-n','--normal', dest='normal', type='float', nargs=3, \
help='normal of slices in direction of increasing slice numbers [%default]')
parser.add_option('-u','--up', dest='up', type='float', nargs=3,
help='up direction of slices [%default]')
parser.add_option('-i','--slices', dest='Nslices', type='int', \
help='number of slices [%default]')
parser.add_option('-d','--distance', dest='distance', type='float', \
help='slice distance [%default]')
parser.add_option('-s','--size', dest='size', type='float', nargs=3, \
help='physical size of ang file [%default]')
parser.add_option('-r','--resolution', dest='resolution', type='float',
help='scaling factor for resolution [%default]')
parser.add_option('--hex','--hexagonal', dest='hexagonal', action='store_true',
help='use in plane hexagonal grid [%default]')
parser.add_option('--ds','--dispscaling', dest='dispScaling', type='float', \
help='scaling of displacements [%default]')
parser.add_option('--interpolation', dest='interpolation', type='int', \
help='number of points for linear interpolation [%default]')
parser.add_option('--verbose', dest='verbose', action='store_true',
help='verbose mode [%default]')
parser.set_defaults(dispLabel = 'displacement')
parser.set_defaults(eulerLabel = ['1_eulerangles','2_eulerangles','3_eulerangles'])
parser.set_defaults(hexagonal = False)
parser.set_defaults(normal = [0.0,0.0,1.0])
parser.set_defaults(up = [0.0,1.0,0.0])
parser.set_defaults(Nslices = 1)
parser.set_defaults(distance = 0.0)
parser.set_defaults(size = [1.0,1.0,0.0])
parser.set_defaults(resolution = 1.0)
parser.set_defaults(dispScaling = 1.0)
parser.set_defaults(verbose = False)
parser.set_defaults(interpolation = 1)
(options,filenames) = parser.parse_args()
#--- SANITY CHECKS
# check for valid filenames
for filename in filenames:
if not os.path.exists(filename):
parser.error('file "%s" does not exist'%filename)
if not os.path.splitext(filename)[1] == '.vtk':
parser.error('"%s": need vtk file'%filename)
# check for othogonality of normal and up vector
if numpy.dot(numpy.array(options.normal),numpy.array(options.up)) > 1e-3:
parser.error('normal vector and up vector have to be orthogonal')
# check for options that are not yet implemented
if options.interpolation > 1:
parser.error('interpolation not yet supported')
if options.hexagonal:
parser.error('hexagonal grid not yet supported')
#--- ITERATE OVER FILES AND PROCESS THEM
for filename in filenames:
# Read the source file
reader = vtkUnstructuredGridReader()
reader.SetFileName(filename)
reader.ReadAllScalarsOn()
reader.ReadAllVectorsOn()
reader.Update()
undeformedMesh = reader.GetOutput()
# Get euler angles from cell data
angles = {}
Nscalars = reader.GetNumberOfScalarsInFile()
for i in range(Nscalars):
scalarName = reader.GetScalarsNameInFile(i)
if scalarName in options.eulerLabel:
angles[scalarName] = undeformedMesh.GetCellData().GetScalars(scalarName)
if len(angles) < 3: # found data for all three euler angles?
for label in options.eulerLabel:
if not label in angles.keys():
parser.error('Could not find scalar data with name %s'%label)
# Get deformed mesh
warpVector = vtkWarpVector()
warpVector.SetScaleFactor(options.dispScaling)
warpVector.SetInput(undeformedMesh)
warpVector.Update()
deformedMesh = warpVector.GetOutput() # todo: not clear how to choose other vector data than the first entry
box = deformedMesh.GetBounds() # bounding box in mesh system
if options.verbose:
print ''
print 'MESH SYSTEM'
print ' bounding box'
print ' x ',[box[0],box[1]]
print ' y ',[box[2],box[3]]
print ' z ',[box[4],box[5]]
# Get cell centers of deformed mesh (position of ips)
cellCenter = vtkCellCenters()
cellCenter.SetVertexCells(0) # do not generate vertex cells, just points
cellCenter.SetInput(deformedMesh)
cellCenter.Update()
meshIPs = cellCenter.GetOutput()
# Get outer surface of deformed mesh
surfaceFilter = vtkDataSetSurfaceFilter()
surfaceFilter.SetInput(deformedMesh)
surfaceFilter.Update()
surface = surfaceFilter.GetOutput()
# Get coordinate system for ang files
# z-vector is normal to slices
# x-vector corresponds to the up-direction
# "R" rotates coordinates from the mesh system into the TSL system
z = numpy.array(options.normal,dtype='float')
z = z / numpy.linalg.norm(z)
x = numpy.array(options.up,dtype='float')
x = x / numpy.linalg.norm(x)
y = numpy.cross(z,x)
R = numpy.array([x,y,z])
# Get bounding box in rotated system (x,y,z)
rotatedbox = [[numpy.inf,-numpy.inf] for i in range(3)] # bounding box in rotated TSL system
for n in range(8): # loop over eight vertices of mesh bounding box
vert = numpy.array([box[0+(n/1)%2],
box[2+(n/2)%2],
box[4+(n/4)%2]]) # vertex in mesh system
rotatedvert = numpy.dot(R,vert) # vertex in rotated system
for i in range(3):
rotatedbox[i][0] = min(rotatedbox[i][0],rotatedvert[i])
rotatedbox[i][1] = max(rotatedbox[i][1],rotatedvert[i])
# Correct bounding box so that a multiplicity of the resolution fits into it
# and get number of points and extent in each (rotated) axis direction
correction = []
Npoints = []
extent = [rotatedbox[i][1] - rotatedbox[i][0] for i in range(3)]
for i in range(2):
Npoints.extend([int(math.ceil(extent[i] / options.resolution))])
correction.extend([float(Npoints[i]) * options.resolution - extent[i]])
if options.distance > 0.0:
Npoints.extend([int(math.ceil(extent[2] / options.distance))])
correction.extend([float(Npoints[2]) * options.distance - extent[2]])
else:
Npoints.extend([options.Nslices])
correction.extend([0.0])
options.distance = extent[2] / float(options.Nslices)
for i in range(3):
rotatedbox[i][0] = rotatedbox[i][0] - 0.5 * correction[i]
rotatedbox[i][1] = rotatedbox[i][1] + 0.5 * correction[i]
extent[i] = rotatedbox[i][1] - rotatedbox[i][0]
if options.verbose:
print ''
print 'ROTATED SYSTEM'
print ' axis (x: up direction, z: slice normal)'
print ' x ',list(x)
print ' y ',list(y)
print ' z ',list(z)
print ' bounding box'
print ' x ',rotatedbox[0]
print ' y ',rotatedbox[1]
print ' z ',rotatedbox[2]
print ' number of points per slice'
print ' x ',Npoints[0]
print ' y ',Npoints[1]
print ' number of slices'
print ' z ',Npoints[2]
# Generate new regular point grid for ang files
# Use "polydata" object with points as single vertices
# beware of TSL convention: y direction is fastest index
points = vtkPoints()
for k in xrange(Npoints[2]):
for j in xrange(Npoints[0]):
for i in xrange(Npoints[1]): # y is fastest index
rotatedpoint = numpy.array([rotatedbox[0][0] + (float(j) + 0.5) * options.resolution,
rotatedbox[1][0] + (float(i) + 0.5) * options.resolution,
rotatedbox[2][0] + (float(k) + 0.5) * options.distance ]) # point in rotated system
point = numpy.dot(R.T,rotatedpoint) # point in mesh system
points.InsertNextPoint(list(point))
vertices = vtkCellArray()
for i in xrange(Npoints[0]*Npoints[1]*Npoints[2]):
vertex = vtkVertex()
vertex.GetPointIds().SetId(0,i) # each vertex consists of exactly one (index 0) point with ID "i"
vertices.InsertNextCell(vertex)
pointgrid = vtk.vtkPolyData()
pointgrid.SetPoints(points)
pointgrid.SetVerts(vertices)
pointgrid.Update()
# Find out which points reside inside mesh geometry
enclosedPoints = vtkSelectEnclosedPoints()
enclosedPoints.SetSurface(surface)
enclosedPoints.SetInput(pointgrid)
enclosedPoints.Update()
# Build kdtree from mesh IPs and match mesh IPs to point grid
# could also be done with nearest neighbor search from damask.core, would possibly be faster ?
kdTree = vtkKdTree()
kdTree.BuildLocatorFromPoints(meshIPs.GetPoints())
gridToMesh = []
ids = vtkIdList()
for i in range(pointgrid.GetNumberOfPoints()):
gridToMesh.append([])
if enclosedPoints.IsInside(i):
kdTree.FindClosestNPoints(options.interpolation,pointgrid.GetPoint(i),ids) # here one could use faster(?) "FindClosestPoint" if only first nearest neighbor required
for j in range(ids.GetNumberOfIds()):
gridToMesh[-1].extend([ids.GetId(j)])
# ITERATE OVER SLICES AND CREATE ANG FILE
NpointsPerSlice = Npoints[0] * Npoints[1]
for sliceN in range(Npoints[2]):
# Open file and write header
angfilename = eval('"'+eval("'%%s_slice%%0%ii.ang'%(math.log10(Npoints[2])+1)")+'"%(os.path.splitext(filename)[0],sliceN)')
with open(angfilename,'w') as angfile:
angfile.write(getHeader(filename,Npoints[1],Npoints[0],options.resolution))
for i in xrange(sliceN*NpointsPerSlice,(sliceN+1)*NpointsPerSlice): # Iterate over points on slice
# Get euler angles of closest IDs
if enclosedPoints.IsInside(i):
phi = []
for j in range(len(gridToMesh[i])):
IP = gridToMesh[i][j]
phi.append([])
for k in range(3):
phi[-1].extend([angles[options.eulerLabel[k]].GetValue(IP)])
else:
phi = [[720,720,720]] # fake angles
# Interpolate Euler angle
# NOT YET IMPLEMENTED, simply take the nearest neighbors values
interpolatedPhi = phi[0]
# write data to ang file
angfile.write(getDataLine(interpolatedPhi,pointgrid.GetPoint(i),enclosedPoints.IsInside(i)))

View File

@ -65,6 +65,7 @@ bin_link = { \
'showTable.py',
'table2ang',
'tagLabel.py',
'vtk2ang',
],
}