Merge branch '256-grid-geometry-displacement-reconstruction' into 'development'
Resolve "grid geometry/displacement reconstruction" Closes #256 See merge request damask/DAMASK!762
This commit is contained in:
commit
f424d54f5e
2
PRIVATE
2
PRIVATE
|
@ -1 +1 @@
|
||||||
Subproject commit 4cd6c7350b0a9d4ad3efcb5fe6c6cfffa99c426f
|
Subproject commit 486e66396f57abe970f01337b9b3967993dd601f
|
|
@ -186,8 +186,6 @@ def displacement_fluct_point(size: _FloatSequence,
|
||||||
Fluctuating part of the cell center displacements.
|
Fluctuating part of the cell center displacements.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
integrator = 0.5j*_np.array(size,float)/_np.pi
|
|
||||||
|
|
||||||
k_s = _ks(size,F.shape[:3],False)
|
k_s = _ks(size,F.shape[:3],False)
|
||||||
k_s_squared = _np.einsum('...l,...l',k_s,k_s)
|
k_s_squared = _np.einsum('...l,...l',k_s,k_s)
|
||||||
k_s_squared[0,0,0] = 1.0
|
k_s_squared[0,0,0] = 1.0
|
||||||
|
@ -195,8 +193,8 @@ def displacement_fluct_point(size: _FloatSequence,
|
||||||
displacement = -_np.einsum('ijkml,ijkl,l->ijkm',
|
displacement = -_np.einsum('ijkml,ijkl,l->ijkm',
|
||||||
_np.fft.rfftn(F,axes=(0,1,2)),
|
_np.fft.rfftn(F,axes=(0,1,2)),
|
||||||
k_s,
|
k_s,
|
||||||
integrator,
|
_np.array([0.5j/_np.pi]*3),
|
||||||
) / k_s_squared[...,_np.newaxis]
|
) / k_s_squared[...,_np.newaxis]
|
||||||
|
|
||||||
return _np.fft.irfftn(displacement,axes=(0,1,2),s=F.shape[:3])
|
return _np.fft.irfftn(displacement,axes=(0,1,2),s=F.shape[:3])
|
||||||
|
|
||||||
|
|
|
@ -2,98 +2,153 @@ import pytest
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from damask import grid_filters
|
from damask import grid_filters
|
||||||
|
from damask import mechanics
|
||||||
from damask import Grid
|
from damask import Grid
|
||||||
from damask import seeds
|
from damask import seeds
|
||||||
|
|
||||||
class TestGridFilters:
|
class TestGridFilters:
|
||||||
|
|
||||||
def test_coordinates0_point(self):
|
def test_coordinates0_point(self):
|
||||||
size = np.random.random(3) # noqa
|
size = np.random.random(3) # noqa
|
||||||
cells = np.random.randint(8,32,(3))
|
cells = np.random.randint(8,32,(3))
|
||||||
coord = grid_filters.coordinates0_point(cells,size)
|
coord = grid_filters.coordinates0_point(cells,size)
|
||||||
assert np.allclose(coord[0,0,0],size/cells*.5) and coord.shape == tuple(cells) + (3,)
|
assert np.allclose(coord[0,0,0],size/cells*.5) and coord.shape == tuple(cells) + (3,)
|
||||||
|
|
||||||
def test_coordinates0_node(self):
|
def test_coordinates0_node(self):
|
||||||
size = np.random.random(3) # noqa
|
size = np.random.random(3) # noqa
|
||||||
cells = np.random.randint(8,32,(3))
|
cells = np.random.randint(8,32,(3))
|
||||||
coord = grid_filters.coordinates0_node(cells,size)
|
coord = grid_filters.coordinates0_node(cells,size)
|
||||||
assert np.allclose(coord[-1,-1,-1],size) and coord.shape == tuple(cells+1) + (3,)
|
assert np.allclose(coord[-1,-1,-1],size) and coord.shape == tuple(cells+1) + (3,)
|
||||||
|
|
||||||
def test_coord0(self):
|
def test_coord0(self):
|
||||||
size = np.random.random(3) # noqa
|
size = np.random.random(3) # noqa
|
||||||
cells = np.random.randint(8,32,(3))
|
cells = np.random.randint(8,32,(3))
|
||||||
c = grid_filters.coordinates0_point(cells+1,size+size/cells)
|
c = grid_filters.coordinates0_point(cells+1,size+size/cells)
|
||||||
n = grid_filters.coordinates0_node(cells,size) + size/cells*.5
|
n = grid_filters.coordinates0_node(cells,size) + size/cells*.5
|
||||||
assert np.allclose(c,n)
|
assert np.allclose(c,n)
|
||||||
|
|
||||||
@pytest.mark.parametrize('mode',['point','node'])
|
@pytest.mark.parametrize('mode',['point','node'])
|
||||||
def test_grid_DNA(self,mode):
|
def test_grid_DNA(self,mode):
|
||||||
"""Ensure that cellsSizeOrigin_coordinates0_xx is the inverse of coordinates0_xx.""" # noqa
|
"""Ensure that cellsSizeOrigin_coordinates0_xx is the inverse of coordinates0_xx.""" # noqa
|
||||||
cells = np.random.randint(8,32,(3))
|
cells = np.random.randint(8,32,(3))
|
||||||
size = np.random.random(3)
|
size = np.random.random(3)
|
||||||
origin = np.random.random(3)
|
origin = np.random.random(3)
|
||||||
coord0 = eval(f'grid_filters.coordinates0_{mode}(cells,size,origin)') # noqa
|
coord0 = eval(f'grid_filters.coordinates0_{mode}(cells,size,origin)') # noqa
|
||||||
_cells,_size,_origin = eval(f'grid_filters.cellsSizeOrigin_coordinates0_{mode}(coord0.reshape(-1,3,order="F"))')
|
_cells,_size,_origin = eval(f'grid_filters.cellsSizeOrigin_coordinates0_{mode}(coord0.reshape(-1,3,order="F"))')
|
||||||
assert np.allclose(cells,_cells) and np.allclose(size,_size) and np.allclose(origin,_origin)
|
assert np.allclose(cells,_cells) and np.allclose(size,_size) and np.allclose(origin,_origin)
|
||||||
|
|
||||||
def test_displacement_fluct_equivalence(self):
|
def test_displacement_fluct_periodic(self):
|
||||||
"""Ensure that fluctuations are periodic.""" # noqa
|
"""Ensure that fluctuations are periodic.""" # noqa
|
||||||
size = np.random.random(3)
|
size = np.random.random(3)
|
||||||
cells = np.random.randint(8,32,(3))
|
cells = np.random.randint(8,32,(3))
|
||||||
F = np.random.random(tuple(cells)+(3,3))
|
F = np.random.random(tuple(cells)+(3,3))
|
||||||
assert np.allclose(grid_filters.displacement_fluct_node(size,F),
|
assert np.allclose(grid_filters.displacement_fluct_node(size,F),
|
||||||
grid_filters.point_to_node(grid_filters.displacement_fluct_point(size,F)))
|
grid_filters.point_to_node(grid_filters.displacement_fluct_point(size,F)))
|
||||||
|
|
||||||
def test_interpolation_to_node(self):
|
def test_interpolation_to_node(self):
|
||||||
size = np.random.random(3) # noqa
|
size = np.random.random(3) # noqa
|
||||||
cells = np.random.randint(8,32,(3))
|
cells = np.random.randint(8,32,(3))
|
||||||
F = np.random.random(tuple(cells)+(3,3))
|
F = np.random.random(tuple(cells)+(3,3))
|
||||||
assert np.allclose(grid_filters.coordinates_node(size,F) [1:-1,1:-1,1:-1],
|
assert np.allclose(grid_filters.coordinates_node(size,F) [1:-1,1:-1,1:-1],
|
||||||
grid_filters.point_to_node(grid_filters.coordinates_point(size,F))[1:-1,1:-1,1:-1])
|
grid_filters.point_to_node(grid_filters.coordinates_point(size,F))[1:-1,1:-1,1:-1])
|
||||||
|
|
||||||
def test_interpolation_to_cell(self):
|
def test_interpolation_to_cell(self):
|
||||||
cells = np.random.randint(1,30,(3)) # noqa
|
cells = np.random.randint(1,30,(3)) # noqa
|
||||||
|
|
||||||
coordinates_node_x = np.linspace(0,np.pi*2,num=cells[0]+1)
|
coordinates_node_x = np.linspace(0,np.pi*2,num=cells[0]+1)
|
||||||
node_field_x = np.cos(coordinates_node_x)
|
node_field_x = np.cos(coordinates_node_x)
|
||||||
node_field = np.broadcast_to(node_field_x.reshape(-1,1,1),cells+1)
|
node_field = np.broadcast_to(node_field_x.reshape(-1,1,1),cells+1)
|
||||||
|
|
||||||
coordinates0_point_x = coordinates_node_x[:-1]+coordinates_node_x[1]*.5
|
coordinates0_point_x = coordinates_node_x[:-1]+coordinates_node_x[1]*.5
|
||||||
cell_field_x = np.interp(coordinates0_point_x,coordinates_node_x,node_field_x,period=np.pi*2.)
|
cell_field_x = np.interp(coordinates0_point_x,coordinates_node_x,node_field_x,period=np.pi*2.)
|
||||||
cell_field = np.broadcast_to(cell_field_x.reshape(-1,1,1),cells)
|
cell_field = np.broadcast_to(cell_field_x.reshape(-1,1,1),cells)
|
||||||
|
|
||||||
assert np.allclose(cell_field,grid_filters.node_to_point(node_field))
|
assert np.allclose(cell_field,grid_filters.node_to_point(node_field))
|
||||||
|
|
||||||
@pytest.mark.parametrize('mode',['point','node'])
|
@pytest.mark.parametrize('mode',['point','node'])
|
||||||
def test_coordinates0_origin(self,mode):
|
def test_coordinates0_origin(self,mode):
|
||||||
origin= np.random.random(3) # noqa
|
origin= np.random.random(3) # noqa
|
||||||
size = np.random.random(3) # noqa
|
size = np.random.random(3) # noqa
|
||||||
cells = np.random.randint(8,32,(3))
|
cells = np.random.randint(8,32,(3))
|
||||||
shifted = eval(f'grid_filters.coordinates0_{mode}(cells,size,origin)')
|
shifted = eval(f'grid_filters.coordinates0_{mode}(cells,size,origin)')
|
||||||
unshifted = eval(f'grid_filters.coordinates0_{mode}(cells,size)')
|
unshifted = eval(f'grid_filters.coordinates0_{mode}(cells,size)')
|
||||||
if mode == 'cell':
|
if mode == 'cell':
|
||||||
assert np.allclose(shifted,unshifted+np.broadcast_to(origin,tuple(cells) +(3,)))
|
assert np.allclose(shifted,unshifted+np.broadcast_to(origin,tuple(cells) +(3,)))
|
||||||
elif mode == 'node':
|
elif mode == 'node':
|
||||||
assert np.allclose(shifted,unshifted+np.broadcast_to(origin,tuple(cells+1)+(3,)))
|
assert np.allclose(shifted,unshifted+np.broadcast_to(origin,tuple(cells+1)+(3,)))
|
||||||
|
|
||||||
@pytest.mark.parametrize('function',[grid_filters.displacement_avg_point,
|
@pytest.mark.parametrize('function',[grid_filters.displacement_avg_point,
|
||||||
grid_filters.displacement_avg_node])
|
grid_filters.displacement_avg_node])
|
||||||
def test_displacement_avg_vanishes(self,function):
|
def test_displacement_avg_vanishes(self,function):
|
||||||
"""Ensure that random fluctuations in F do not result in average displacement.""" # noqa
|
"""Ensure that random fluctuations in F do not result in average displacement.""" # noqa
|
||||||
size = np.random.random(3)
|
size = np.random.random(3) + 1.0
|
||||||
cells = np.random.randint(8,32,(3))
|
cells = np.random.randint(8,32,(3))
|
||||||
F = np.random.random(tuple(cells)+(3,3))
|
F = np.random.random(tuple(cells)+(3,3))
|
||||||
F += np.eye(3) - np.average(F,axis=(0,1,2))
|
F += np.eye(3) - np.average(F,axis=(0,1,2))
|
||||||
assert np.allclose(function(size,F),0.0)
|
assert np.allclose(function(size,F),0.0)
|
||||||
|
|
||||||
|
@pytest.mark.parametrize('function',[grid_filters.displacement_avg_point,
|
||||||
|
grid_filters.displacement_avg_node])
|
||||||
|
def test_displacement_avg_vanishes_simple(self,function):
|
||||||
|
F = np.eye(3)
|
||||||
|
size = np.random.random(3) + 1.0
|
||||||
|
F_c = F.copy()
|
||||||
|
F_t = F.copy()
|
||||||
|
|
||||||
|
F_c[0,0] = 0.8
|
||||||
|
F_t[0,0] = 1.2
|
||||||
|
|
||||||
|
F_no_avg = np.concatenate([np.broadcast_to(_,(10,20,20,3,3)) for _ in [F_t,F_c]])
|
||||||
|
assert np.allclose(function(size,F_no_avg),0.0)
|
||||||
|
|
||||||
@pytest.mark.parametrize('function',[grid_filters.displacement_fluct_point,
|
@pytest.mark.parametrize('function',[grid_filters.displacement_fluct_point,
|
||||||
grid_filters.displacement_fluct_node])
|
grid_filters.displacement_fluct_node])
|
||||||
def test_displacement_fluct_vanishes(self,function):
|
def test_displacement_fluct_vanishes_avg(self,function):
|
||||||
"""Ensure that constant F does not result in fluctuating displacement.""" # noqa
|
"""Ensure that constant F does not result in fluctuating displacement.""" # noqa
|
||||||
size = np.random.random(3)
|
size = np.random.random(3)
|
||||||
cells = np.random.randint(8,32,(3))
|
cells = np.random.randint(8,32,(3))
|
||||||
F = np.broadcast_to(np.random.random((3,3)), tuple(cells)+(3,3))
|
F = np.broadcast_to(np.random.random((3,3)), tuple(cells)+(3,3))
|
||||||
assert np.allclose(function(size,F),0.0)
|
assert np.allclose(function(size,F),0.0)
|
||||||
|
|
||||||
|
displacement_fluct_test_data = [
|
||||||
|
(['np.sin(np.pi*2*nodes[...,0]/size[0])', '0.0', '0.0',
|
||||||
|
'0.0', '0.0', '0.0',
|
||||||
|
'0.0', '0.0', '0.0'],
|
||||||
|
['-np.cos(np.pi*2*nodes[...,0]/size[0])/np.pi/2*size[0]', '0.0', '0.0']),
|
||||||
|
|
||||||
|
(['np.cos(np.pi*2*nodes[...,0]/size[0])', '0.0', '0.0',
|
||||||
|
'0.0', '0.0', '0.0',
|
||||||
|
'0.0', '0.0', 'np.cos(np.pi*2*nodes[...,2]/size[2])'],
|
||||||
|
['np.sin(np.pi*2*nodes[...,0]/size[0])/np.pi/2*size[0]',
|
||||||
|
'0.0',
|
||||||
|
'np.sin(np.pi*2*nodes[...,2]/size[2])/np.pi/2*size[2]'])]
|
||||||
|
@pytest.mark.parametrize('F_def,u_def',displacement_fluct_test_data)
|
||||||
|
def test_displacment_fluct_analytic(self,F_def,u_def):
|
||||||
|
size = np.random.random(3)+1.0
|
||||||
|
cells = np.random.randint(8,32,(3))
|
||||||
|
|
||||||
|
nodes = grid_filters.coordinates0_point(cells,size)
|
||||||
|
my_locals = locals() # needed for list comprehension
|
||||||
|
|
||||||
|
F = np.stack([np.broadcast_to(eval(F,globals(),my_locals),cells) for F in F_def],axis=-1).reshape(tuple(cells) + (3,3))
|
||||||
|
u = np.stack([np.broadcast_to(eval(u,globals(),my_locals),cells) for u in u_def],axis=-1).reshape(tuple(cells) + (3,))
|
||||||
|
|
||||||
|
|
||||||
|
assert np.allclose(u,grid_filters.displacement_fluct_point(size,F))
|
||||||
|
|
||||||
|
def test_coordinates(self):
|
||||||
|
cells = np.array([np.random.randint(40,100)*2,2,2])
|
||||||
|
size = (np.random.rand(3)+0.8)*cells
|
||||||
|
F = np.broadcast_to(np.eye(3),tuple(cells)+(3,3)).copy()
|
||||||
|
F[...,0,0] += np.expand_dims(0.1*np.sin(np.linspace(0,2*np.pi,cells[0],False))+
|
||||||
|
np.random.rand(cells[0])*0.05,(-1,-2))
|
||||||
|
|
||||||
|
c_n = grid_filters.coordinates_node(size,F)[:,0,0,0]
|
||||||
|
l_0 = (size/cells)[0]
|
||||||
|
l = c_n[1:] - c_n[:-1]
|
||||||
|
epsilon_reconstructed = (l-l_0)/l_0
|
||||||
|
epsilon_direct = mechanics.strain(F,'V',1)[:,0,0,0,0]
|
||||||
|
assert np.corrcoef(epsilon_reconstructed,epsilon_direct)[0,1] > 0.99
|
||||||
|
|
||||||
@pytest.mark.parametrize('function',[grid_filters.cellsSizeOrigin_coordinates0_point,
|
@pytest.mark.parametrize('function',[grid_filters.cellsSizeOrigin_coordinates0_point,
|
||||||
grid_filters.cellsSizeOrigin_coordinates0_node])
|
grid_filters.cellsSizeOrigin_coordinates0_node])
|
||||||
|
|
Loading…
Reference in New Issue