polishing
This commit is contained in:
parent
3e65d44e07
commit
f2e722ed2e
|
@ -1,14 +1,14 @@
|
|||
import numpy as np
|
||||
|
||||
def __ks(size,field):
|
||||
"""Get differential operator."""
|
||||
def __ks(size,field,first_order=False):
|
||||
"""Get wave numbers operator."""
|
||||
grid = np.array(np.shape(field)[0:3])
|
||||
|
||||
k_sk = np.where(np.arange(grid[0])>grid[0]//2,np.arange(grid[0])-grid[0],np.arange(grid[0]))/size[0]
|
||||
if grid[0]%2 == 0: k_sk[grid[0]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011)
|
||||
if grid[0]%2 == 0 and first_order: k_sk[grid[0]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011)
|
||||
|
||||
k_sj = np.where(np.arange(grid[1])>grid[1]//2,np.arange(grid[1])-grid[1],np.arange(grid[1]))/size[1]
|
||||
if grid[1]%2 == 0: k_sj[grid[1]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011)
|
||||
if grid[1]%2 == 0 and first_order: k_sj[grid[1]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011)
|
||||
|
||||
k_si = np.arange(grid[2]//2+1)/size[2]
|
||||
|
||||
|
@ -19,7 +19,7 @@ def __ks(size,field):
|
|||
def curl(size,field):
|
||||
"""Calculate curl of a vector or tensor field in Fourier space."""
|
||||
n = np.prod(field.shape[3:])
|
||||
k_s = __ks(size,field)
|
||||
k_s = __ks(size,field,True)
|
||||
|
||||
e = np.zeros((3, 3, 3))
|
||||
e[0, 1, 2] = e[1, 2, 0] = e[2, 0, 1] = +1.0 # Levi-Civita symbol
|
||||
|
@ -35,7 +35,7 @@ def curl(size,field):
|
|||
def divergence(size,field):
|
||||
"""Calculate divergence of a vector or tensor field in Fourier space."""
|
||||
n = np.prod(field.shape[3:])
|
||||
k_s = __ks(size,field)
|
||||
k_s = __ks(size,field,True)
|
||||
|
||||
field_fourier = np.fft.rfftn(field,axes=(0,1,2))
|
||||
divergence = (np.einsum('ijkl,ijkl ->ijk', k_s,field_fourier)*2.0j*np.pi if n == 3 else # vector, 3 -> 1
|
||||
|
@ -47,7 +47,7 @@ def divergence(size,field):
|
|||
def gradient(size,field):
|
||||
"""Calculate gradient of a vector or scalar field in Fourier space."""
|
||||
n = np.prod(field.shape[3:])
|
||||
k_s = __ks(size,field)
|
||||
k_s = __ks(size,field,True)
|
||||
|
||||
field_fourier = np.fft.rfftn(field,axes=(0,1,2))
|
||||
gradient = (np.einsum('ijkl,ijkm->ijkm', field_fourier,k_s)*2.0j*np.pi if n == 1 else # scalar, 1 -> 3
|
||||
|
@ -56,29 +56,37 @@ def gradient(size,field):
|
|||
return np.fft.irfftn(gradient,axes=(0,1,2),s=field.shape[0:3])
|
||||
|
||||
|
||||
#--------------------------------------------------------------------------------------------------
|
||||
def displacementFluctFFT(F,size):
|
||||
def coord_node(grid,size):
|
||||
"""Positions of nodes (undeformed)."""
|
||||
x, y, z = np.meshgrid(np.linspace(0,size[2],1+grid[2]),
|
||||
np.linspace(0,size[1],1+grid[1]),
|
||||
np.linspace(0,size[0],1+grid[0]),
|
||||
indexing = 'ij')
|
||||
|
||||
return np.concatenate((z[:,:,:,None],y[:,:,:,None],x[:,:,:,None]),axis = 3)
|
||||
|
||||
|
||||
def coord_cell(grid,size):
|
||||
"""Positions of cell centers (undeformed)."""
|
||||
delta = size/grid*0.5
|
||||
x, y, z = np.meshgrid(np.linspace(delta[2],size[2]-delta[2],grid[2]),
|
||||
np.linspace(delta[1],size[1]-delta[1],grid[1]),
|
||||
np.linspace(delta[0],size[0]-delta[0],grid[0]),
|
||||
indexing = 'ij')
|
||||
|
||||
return np.concatenate((z[:,:,:,None],y[:,:,:,None],x[:,:,:,None]),axis = 3)
|
||||
|
||||
|
||||
def displacement_fluct(size,F):
|
||||
"""Calculate displacement field from deformation gradient field."""
|
||||
integrator = 0.5j * size / np.pi
|
||||
|
||||
kk, kj, ki = np.meshgrid(np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2])),
|
||||
np.where(np.arange(grid[1])>grid[1]//2,np.arange(grid[1])-grid[1],np.arange(grid[1])),
|
||||
np.arange(grid[0]//2+1),
|
||||
indexing = 'ij')
|
||||
k_s = np.concatenate((ki[:,:,:,None],kj[:,:,:,None],kk[:,:,:,None]),axis = 3)
|
||||
k_sSquared = np.einsum('...l,...l',k_s,k_s)
|
||||
k_sSquared[0,0,0] = 1.0 # ignore global average frequency
|
||||
k_s = __ks(size,F,False)
|
||||
|
||||
#--------------------------------------------------------------------------------------------------
|
||||
# integration in Fourier space
|
||||
|
||||
displacement_fourier = -np.einsum('ijkml,ijkl,l->ijkm',
|
||||
displacement = -np.einsum('ijkml,ijkl,l->ijkm',
|
||||
np.fft.rfftn(F,axes=(0,1,2)),
|
||||
k_s,
|
||||
integrator,
|
||||
) / k_sSquared[...,np.newaxis]
|
||||
|
||||
#--------------------------------------------------------------------------------------------------
|
||||
# backtransformation to real space
|
||||
|
||||
return np.fft.irfftn(displacement_fourier,grid[::-1],axes=(0,1,2))
|
||||
return np.fft.irfftn(displacement,axes=(0,1,2))
|
||||
|
|
Loading…
Reference in New Issue