copied some stcopied some scripts from the Code folder that are of interest for DAMASK

This commit is contained in:
Martin Diehl 2015-03-05 10:05:00 +00:00
parent 70eaa9f8b8
commit f1df6cf40f
4 changed files with 624 additions and 0 deletions

View File

@ -0,0 +1,67 @@
#!/usr/bin/env python
import os,sys,re
try:
inName = sys.argv[1]
outName = os.path.splitext(inName)[0]+'.linearODF'
nPhi1,nPHI,nPhi2 = map(int,sys.argv[2:5])
except:
print "\nusage:",sys.argv[0],"file nPhi1 nPHI nPhi2\n"
sys.exit(1)
N = (nPhi1-1)*(nPHI-1)*(nPhi2-1)
try:
inFile = open(inName,'r')
content = inFile.readlines()
except:
print 'unable to read:',inName
sys.exit(1)
try:
outFile = open(outName,'w')
except:
print 'unable to write:',outName
sys.exit(1)
ODF = [[[[None] for k in range(nPhi2)] for j in range(nPHI)] for i in range(nPhi1)]
linear = [None]*N
line = 0
while (content[line].startswith('#')): # skip comments at start of file
line += 1
for iPhi1 in range(nPhi1):
for iPHI in range(nPHI):
for iPhi2 in range(nPhi2):
words = content[line].split()
ODF[iPhi1][iPHI][iPhi2] = float(words[3]) # extract intensity (in column 4)
line += 1
for iPhi1 in range(nPhi1-1):
for iPHI in range(nPHI-1):
for iPhi2 in range(nPhi2-1):
linear[iPhi1*(nPHI-1)*(nPhi2-1)+iPHI*(nPhi2-1)+iPhi2] = (\
ODF[iPhi1 ][iPHI ][iPhi2 ] + \
ODF[iPhi1 ][iPHI ][iPhi2+1] + \
ODF[iPhi1 ][iPHI+1][iPhi2 ] + \
ODF[iPhi1 ][iPHI+1][iPhi2+1] + \
ODF[iPhi1+1][iPHI ][iPhi2 ] + \
ODF[iPhi1+1][iPHI ][iPhi2+1] + \
ODF[iPhi1+1][iPHI+1][iPhi2 ] + \
ODF[iPhi1+1][iPHI+1][iPhi2+1] \
) / 8.0
inFile.close()
outFile.write('rangePhi1?\trangePHI?\trangePhi2?\n')
outFile.write('%i\t%i\t%i needs to be converted to angular steps\n'%(nPhi1-1,nPHI-1,nPhi2-1))
outFile.write('cell-centered data\n')
outFile.write('\n')
for i in range(N):
outFile.write('%g\n'%(linear[i]))
outFile.close()

105
processing/pre/cropLinearODF.py Executable file
View File

@ -0,0 +1,105 @@
#!/usr/bin/env python
import os,sys,math,re
# --- helper functions ---
def binAsBins(bin,intervals):
""" explode compound bin into 3D bins list """
bins = [0]*3
bins[0] = (bin//(intervals[1] * intervals[2])) % intervals[0]
bins[1] = (bin//intervals[2]) % intervals[1]
bins[2] = bin % intervals[2]
return bins
def binsAsBin(bins,intervals):
""" implode 3D bins into compound bin """
return (bins[0]*intervals[1] + bins[1])*intervals[2] + bins[2]
def EulersAsBins(Eulers,intervals,deltas,center):
""" return list of Eulers translated into 3D bins list """
return [\
int((euler+(0.5-center)*delta)//delta)%interval \
for euler,delta,interval in zip(Eulers,deltas,intervals) \
]
def binAsEulers(bin,intervals,deltas,center):
""" compound bin number translated into list of Eulers """
Eulers = [0.0]*3
Eulers[2] = (bin%intervals[2] + center)*deltas[2]
Eulers[1] = (bin//intervals[2]%intervals[1] + center)*deltas[1]
Eulers[0] = (bin//(intervals[2]*intervals[1]) + center)*deltas[0]
return Eulers
# check usage
try:
inName = sys.argv[1]
outLimits = sys.argv[2:5]
except:
print "usage:",sys.argv[0],"nameLinearODF limitPhi1 limitPHI limitPhi2"
sys.exit(1);
#open binned ODF
try:
inFile = open(inName,'r')
except:
print 'unable to open binnedODF:', inName;
sys.exit(1);
# process header info
ODF = {}
inLimits = [math.radians(int(float(limit))) for limit in inFile.readline().split()]
outLimits = [math.radians(int(float(limit))) for limit in outLimits]
deltas = [math.radians(float(delta)) for delta in inFile.readline().split()]
inIntervals = [int(limit/delta) for limit,delta in zip(inLimits,deltas)]
outIntervals = [int(limit/delta) for limit,delta in zip(outLimits,deltas)]
inBins = inIntervals[0]*inIntervals[1]*inIntervals[2]
print 'Limit:', [math.degrees(limit) for limit in inLimits]
print 'Crop:', [math.degrees(limit) for limit in outLimits]
print 'Delta:', [math.degrees(delta) for delta in deltas]
print 'Interval:', inIntervals
print 'Interval:', outIntervals
centering = inFile.readline()
if re.search('cell',centering.lower()):
ODF['center'] = 0.5
print 'cell-centered data (offset %g)'%ODF['center']
else:
ODF['center'] = 0.0
print 'vertex-centered data (offset %g)'%ODF['center']
inFile.readline() # skip blank delimiter
# read linear binned data
inODF = map(float,inFile.readlines())
inFile.close()
if len(inODF) != inBins:
print 'expecting', inBins, 'values but got', len(inODF)
sys.exit(1)
try:
outName = os.path.splitext(inName)[0]+'_%ix%ix%i'%(outIntervals[0],outIntervals[1],outIntervals[2])+'.linearODF'
outFile = open(outName,'w')
except:
print 'unable to write:',outName
sys.exit(1)
outFile.write('%g\t%g\t%g\n'%(\
math.degrees(outIntervals[0]*deltas[0]),\
math.degrees(outIntervals[1]*deltas[1]),\
math.degrees(outIntervals[2]*deltas[2]) ))
outFile.write('%i\t%i\t%i\n'%(math.degrees(deltas[0]),math.degrees(deltas[1]),math.degrees(deltas[2])))
outFile.write('%s-centered data\n'%{True:'vertex',False:'cell'}[ODF['center']==0.0])
outFile.write('\n')
for phi1 in range(outIntervals[0]):
for Phi in range(outIntervals[1]):
for phi2 in range(outIntervals[2]):
outFile.write('%g\n'%(inODF[((phi1*inIntervals[1])+Phi)*inIntervals[2]+phi2]))
outFile.close()

View File

@ -0,0 +1,331 @@
#!/usr/bin/env python
import os,sys,math,re,random
random.seed()
# --- helper functions ---
def binAsBins(bin,intervals):
""" explode compound bin into 3D bins list """
bins = [0]*3
bins[0] = (bin//(intervals[1] * intervals[2])) % intervals[0]
bins[1] = (bin//intervals[2]) % intervals[1]
bins[2] = bin % intervals[2]
return bins
def binsAsBin(bins,intervals):
""" implode 3D bins into compound bin """
return (bins[0]*intervals[1] + bins[1])*intervals[2] + bins[2]
def EulersAsBins(Eulers,intervals,deltas,center):
""" return list of Eulers translated into 3D bins list """
return [\
int((euler+(0.5-center)*delta)//delta)%interval \
for euler,delta,interval in zip(Eulers,deltas,intervals) \
]
def binAsEulers(bin,intervals,deltas,center):
""" compound bin number translated into list of Eulers """
Eulers = [0.0]*3
Eulers[2] = (bin%intervals[2] + center)*deltas[2]
Eulers[1] = (bin//intervals[2]%intervals[1] + center)*deltas[1]
Eulers[0] = (bin//(intervals[2]*intervals[1]) + center)*deltas[0]
return Eulers
def directInvRepetitions(probability,scale):
""" calculate number of samples drawn by direct inversion """
nDirectInv = 0
for bin in range(len(probability)): # loop over bins
nDirectInv += int(round(probability[bin]*scale)) # calc repetition
return nDirectInv
# --- sampling methods ---
# ----- efficient algorithm ---------
def directInversion (ODF,nSamples):
""" ODF contains 'dV_V' (normalized to 1), 'center', 'intervals', 'limits' (in radians) """
nBins = ODF['intervals'][0]*ODF['intervals'][1]*ODF['intervals'][2]
deltas = [limit/intervals for limit,intervals in zip(ODF['limits'],ODF['intervals'])]
# calculate repetitions of each orientation
if re.search(r'hybrid',sys.argv[0],re.IGNORECASE): # my script's name contains "hybrid"
nOptSamples = max(ODF['nNonZero'],nSamples) # random subsampling if too little samples requested
else: # blunt integer approximation
nOptSamples = nSamples
nInvSamples = 0
repetition = [None]*nBins
probabilityScale = nOptSamples # guess
scaleLower = 0.0
nInvSamplesLower = 0
scaleUpper = float(nOptSamples)
incFactor = 1.0
nIter = 0
nInvSamplesUpper = directInvRepetitions(ODF['dV_V'],scaleUpper)
while (\
(scaleUpper-scaleLower > scaleUpper*1e-15 or nInvSamplesUpper < nOptSamples) and \
nInvSamplesUpper != nOptSamples \
): # closer match required?
if nInvSamplesUpper < nOptSamples:
scaleLower,scaleUpper = scaleUpper,scaleUpper+incFactor*(scaleUpper-scaleLower)/2.0
incFactor *= 2.0
nInvSamplesLower,nInvSamplesUpper = nInvSamplesUpper,directInvRepetitions(ODF['dV_V'],scaleUpper)
else:
scaleUpper = (scaleLower+scaleUpper)/2.0
incFactor = 1.0
nInvSamplesUpper = directInvRepetitions(ODF['dV_V'],scaleUpper)
nIter += 1
print '%i:(%12.11f,%12.11f) %i <= %i <= %i'%(nIter,scaleLower,scaleUpper,nInvSamplesLower,nOptSamples,nInvSamplesUpper)
nInvSamples = nInvSamplesUpper
scale = scaleUpper
print 'created set of',nInvSamples,'samples (',float(nInvSamples)/nOptSamples-1.0,') with scaling',scale,'delivering',nSamples
repetition = [None]*nBins # preallocate and clear
for bin in range(nBins): # loop over bins
repetition[bin] = int(round(ODF['dV_V'][bin]*scale)) # calc repetition
# build set
set = [None]*nInvSamples
i = 0
for bin in range(nBins):
set[i:i+repetition[bin]] = [bin]*repetition[bin] # fill set with bin, i.e. orientation
i += repetition[bin] # advance set counter
orientations = [None]*nSamples
reconstructedODF = [0.0]*nBins
unitInc = 1.0/nSamples
for j in range(nSamples):
if (j == nInvSamples-1): ex = j
else: ex = int(round(random.uniform(j+0.5,nInvSamples-0.5)))
bin = set[ex]
bins = binAsBins(bin,ODF['intervals'])
Eulers = binAsEulers(bin,ODF['intervals'],deltas,ODF['center'])
orientations[j] = '%g\t%g\t%g' %( math.degrees(Eulers[0]),math.degrees(Eulers[1]),math.degrees(Eulers[2]) )
reconstructedODF[bin] += unitInc
set[ex] = set[j] # exchange orientations
return orientations, reconstructedODF
# ----- trial and error algorithms ---------
def MonteCarloEulers (ODF,nSamples):
""" ODF contains 'dV_V' (normalized to 1), 'center', 'intervals', 'limits' (in radians) """
countMC = 0
maxdV_V = max(ODF['dV_V'])
nBins = ODF['intervals'][0]*ODF['intervals'][1]*ODF['intervals'][2]
deltas = [limit/intervals for limit,intervals in zip(ODF['limits'],ODF['intervals'])]
orientations = [None]*nSamples
reconstructedODF = [0.0]*nBins
unitInc = 1.0/nSamples
for j in range(nSamples):
MC = maxdV_V*2.0
bin = 0
while MC > ODF['dV_V'][bin]:
countMC += 1
MC = maxdV_V*random.random()
Eulers = [limit*random.random() for limit in ODF['limits']]
bins = EulersAsBins(Eulers,ODF['intervals'],deltas,ODF['center'])
bin = binsAsBin(bins,ODF['intervals'])
orientations[j] = '%g\t%g\t%g' %( math.degrees(Eulers[0]),math.degrees(Eulers[1]),math.degrees(Eulers[2]) )
reconstructedODF[bin] += unitInc
return orientations, reconstructedODF, countMC
def MonteCarloBins (ODF,nSamples):
""" ODF contains 'dV_V' (normalized to 1), 'center', 'intervals', 'limits' (in radians) """
countMC = 0
maxdV_V = max(ODF['dV_V'])
nBins = ODF['intervals'][0]*ODF['intervals'][1]*ODF['intervals'][2]
deltas = [limit/intervals for limit,intervals in zip(ODF['limits'],ODF['intervals'])]
orientations = [None]*nSamples
reconstructedODF = [0.0]*nBins
unitInc = 1.0/nSamples
for j in range(nSamples):
MC = maxdV_V*2.0
bin = 0
while MC > ODF['dV_V'][bin]:
countMC += 1
MC = maxdV_V*random.random()
bin = int(nBins * random.random())
Eulers = binAsEulers(bin,ODF['intervals'],deltas,ODF['center'])
orientations[j] = '%g\t%g\t%g' %( math.degrees(Eulers[0]),math.degrees(Eulers[1]),math.degrees(Eulers[2]) )
reconstructedODF[bin] += unitInc
return orientations, reconstructedODF
def TothVanHoutteSTAT (ODF,nSamples):
""" ODF contains 'dV_V' (normalized to 1), 'center', 'intervals', 'limits' (in radians) """
nBins = ODF['intervals'][0]*ODF['intervals'][1]*ODF['intervals'][2]
deltas = [limit/intervals for limit,intervals in zip(ODF['limits'],ODF['intervals'])]
orientations = [None]*nSamples
reconstructedODF = [0.0]*nBins
unitInc = 1.0/nSamples
selectors = [random.random() for i in range(nSamples)]
selectors.sort()
indexSelector = 0
cumdV_V = 0.0
countSamples = 0
for bin in range(nBins) :
cumdV_V += ODF['dV_V'][bin]
while indexSelector < nSamples and selectors[indexSelector] < cumdV_V:
Eulers = binAsEulers(bin,ODF['intervals'],deltas,ODF['center'])
orientations[countSamples] = '%g\t%g\t%g' %( math.degrees(Eulers[0]),math.degrees(Eulers[1]),math.degrees(Eulers[2]) )
reconstructedODF[bin] += unitInc
countSamples += 1
indexSelector += 1
print 'created set of',countSamples,'when asked to deliver',nSamples
return orientations, reconstructedODF
# check usage
try:
nameBinnedODF = sys.argv[1]
nSamples = int(float(sys.argv[2]))
except:
print "\nusage:",os.path.basename(sys.argv[0]),"nameLinearODF nSamples [nameSampledODF]\n"
sys.exit(1);
methods = ['IA','STAT']
#open binned ODF
try:
fileBinnedODF = open(nameBinnedODF,'r')
except:
print 'unable to open binnedODF:', nameBinnedODF;
sys.exit(1);
# process header info
ODF = {}
ODF['limits'] = [math.radians(float(limit)) for limit in fileBinnedODF.readline().split()]
ODF['deltas'] = [math.radians(float(delta)) for delta in fileBinnedODF.readline().split()]
ODF['intervals'] = [int(round(limit/delta)) for limit,delta in zip(ODF['limits'],ODF['deltas'])]
nBins = ODF['intervals'][0]*ODF['intervals'][1]*ODF['intervals'][2]
print 'Limit:', [math.degrees(limit) for limit in ODF['limits']]
print 'Delta:', [math.degrees(delta) for delta in ODF['deltas']]
print 'Interval:', ODF['intervals']
centering = fileBinnedODF.readline()
if re.search('cell',centering.lower()):
ODF['center'] = 0.5
print 'cell-centered data (offset %g)'%ODF['center']
else:
ODF['center'] = 0.0
print 'vertex-centered data (offset %g)'%ODF['center']
fileBinnedODF.readline() # skip blank delimiter
# read linear binned data
linesBinnedODF = fileBinnedODF.readlines()
fileBinnedODF.close()
if len(linesBinnedODF) != nBins:
print 'expecting', nBins, 'values but got', len(linesBinnedODF)
sys.exit(1)
# build binnedODF array
print 'reading',nBins,'values'
sumdV_V = 0.0
ODF['dV_V'] = [None]*nBins
ODF['nNonZero'] = 0
dg = ODF['deltas'][0]*2*math.sin(ODF['deltas'][1]/2.0)*ODF['deltas'][2]
for bin in range(nBins):
ODF['dV_V'][bin] = \
max(0.0,float(linesBinnedODF[bin])) * dg * \
math.sin(((bin//ODF['intervals'][2])%ODF['intervals'][1]+ODF['center'])*ODF['deltas'][1])
if ODF['dV_V'][bin] > 0.0:
sumdV_V += ODF['dV_V'][bin]
ODF['nNonZero'] += 1
for bin in range(nBins): ODF['dV_V'][bin] /= sumdV_V # normalize dV/V
print 'non-zero fraction:', float(ODF['nNonZero'])/nBins,'(%i/%i)'%(ODF['nNonZero'],nBins)
print 'Volume integral of ODF:', sumdV_V
print 'Reference Integral:', ODF['limits'][0]*ODF['limits'][2]*(1-math.cos(ODF['limits'][1]))
# call methods
Functions = {'IA': 'directInversion', 'STAT': 'TothVanHoutteSTAT', 'MC': 'MonteCarloBins'}
Orientations = {}
ReconstructedODF = {}
for method in methods:
Orientations[method], ReconstructedODF[method] = (globals()[Functions[method]])(ODF,nSamples)
# calculate accuracy of sample
squaredDiff = {}
squaredRelDiff = {}
mutualProd = {}
indivSum = {}
indivSquaredSum = {}
for method in ['orig']+methods:
squaredDiff[method] = 0.0
squaredRelDiff[method] = 0.0
mutualProd[method] = 0.0
indivSum[method] = 0.0
indivSquaredSum[method] = 0.0
for bin in range(nBins):
for method in methods:
squaredDiff[method] += (ODF['dV_V'][bin] - ReconstructedODF[method][bin])**2
if ODF['dV_V'][bin] > 0.0:
squaredRelDiff[method] += (ODF['dV_V'][bin] - ReconstructedODF[method][bin])**2/ODF['dV_V'][bin]**2
mutualProd[method] += ODF['dV_V'][bin]*ReconstructedODF[method][bin]
indivSum[method] += ReconstructedODF[method][bin]
indivSquaredSum[method] += ReconstructedODF[method][bin]**2
indivSum['orig'] += ODF['dV_V'][bin]
indivSquaredSum['orig'] += ODF['dV_V'][bin]**2
print 'sqrt(N*)RMSD of ODFs:\t', [math.sqrt(nSamples*squaredDiff[method]) for method in methods]
print 'RMSrD of ODFs:\t', [math.sqrt(squaredRelDiff[method]) for method in methods]
print 'rMSD of ODFs:\t', [squaredDiff[method]/indivSquaredSum['orig'] for method in methods]
#print 'correlation slope:\t', [(nBins*mutualProd[method]-indivSum['orig']*indivSum[method])/(nBins*indivSquaredSum['orig']-indivSum['orig']**2) for method in ('IA','STAT','MC')]
#print 'correlation confidence:\t', [(mutualProd[method]-indivSum['orig']*indivSum[method]/nBins)/\
# (nBins*math.sqrt((indivSquaredSum['orig']/nBins-(indivSum['orig']/nBins)**2)*(indivSquaredSum[method]/nBins-(indivSum[method]/nBins)**2))) for method in ('IA','STAT','MC')]
print 'nNonZero correlation slope:\t', [(ODF['nNonZero']*mutualProd[method]-indivSum['orig']*indivSum[method])/(ODF['nNonZero']*indivSquaredSum['orig']-indivSum['orig']**2) for method in methods]
print 'nNonZero correlation confidence:\t', [(mutualProd[method]-indivSum['orig']*indivSum[method]/ODF['nNonZero'])/\
(ODF['nNonZero']*math.sqrt((indivSquaredSum['orig']/ODF['nNonZero']-(indivSum['orig']/ODF['nNonZero'])**2)*(indivSquaredSum[method]/ODF['nNonZero']-(indivSum[method]/ODF['nNonZero'])**2))) for method in methods]
# write result
try:
nameSampledODF = sys.argv[3]
except:
sys.exit(0) # that's it folks
for method in methods:
if method == 'IA' and nSamples < ODF['nNonZero']:
strOpt = '(%i)'%ODF['nNonZero']
else:
strOpt = ''
try:
fileSampledODF = open(nameSampledODF+'.'+method+'sampled_'+str(nSamples)+strOpt, 'w')
fileSampledODF.write('%i\n'%nSamples)
fileSampledODF.write('\n'.join(Orientations[method])+'\n')
fileSampledODF.close()
except:
print 'unable to write sampledODF:', nameSampledODF+'.'+method+'sampled_'+str(nSamples)+strOpt
try:
fileRegressionODF = open(nameSampledODF+'.'+method+'regression_'+str(nSamples)+strOpt, 'w')
fileRegressionODF.write('\n'.join([a+'\t'+b for (a,b) in zip(map(str,ReconstructedODF[method]),map(str,ODF['dV_V']))])+'\n')
fileRegressionODF.close()
except:
print 'unable to write RegressionODF:', nameSampledODF+'.'+method+'regression_'+str(nSamples)+strOpt

121
processing/pre/texture2ang.py Executable file
View File

@ -0,0 +1,121 @@
#!/usr/bin/env python
import os,sys,math,re
from optparse import OptionParser
def integerFactorization(i):
j = int(math.floor(math.sqrt(float(i))))
while (j>1 and int(i)%j != 0):
j -= 1
return j
def positiveRadians(angle):
angle = math.radians(float(angle))
while angle < 0.0:
angle += 2.0*math.pi
return angle
def getHeader(sizeX,sizeY,step):
return [ \
'# TEM_PIXperUM 1.000000', \
'# x-star 0.509548', \
'# y-star 0.795272', \
'# z-star 0.611799', \
'# WorkingDistance 18.000000', \
'#', \
'# Phase 1', \
'# MaterialName Al', \
'# Formula Fe', \
'# Info', \
'# Symmetry 43', \
'# LatticeConstants 2.870 2.870 2.870 90.000 90.000 90.000', \
'# NumberFamilies 4', \
'# hklFamilies 1 1 0 1 0.000000 1', \
'# hklFamilies 2 0 0 1 0.000000 1', \
'# hklFamilies 2 1 1 1 0.000000 1', \
'# hklFamilies 3 1 0 1 0.000000 1', \
'# Categories 0 0 0 0 0 ', \
'#', \
'# GRID: SquareGrid', \
'# XSTEP: ' + str(step), \
'# YSTEP: ' + str(step), \
'# NCOLS_ODD: ' + str(sizeX), \
'# NCOLS_EVEN: ' + str(sizeX), \
'# NROWS: ' + str(sizeY), \
'#', \
'# OPERATOR: ODFsammpling', \
'#', \
'# SAMPLEID: ', \
'#', \
'# SCANID: ', \
'#', \
]
parser = OptionParser(usage='%prog [options] datafile(s)')
parser.add_option("-c", "--column", type="int",\
dest="column",\
help="starting column of Euler triplet")
parser.add_option("-s", "--skip", type="int",\
dest="skip",\
help="skip this many lines of heading info [%default]")
parser.set_defaults (column = 1)
parser.set_defaults (skip = 0)
(options, files) = parser.parse_args()
options.column -= 1
if files == []:
parser.error('no input file specified...')
sys.exit(1)
if options.column < 0:
parser.error('column needs to be 1,2,...')
sys.exit(1)
while len(files) > 0:
textureFilename = files.pop()
baseName = os.path.splitext(textureFilename)[0]
# open texture file and read content
textureFile = open(textureFilename)
content = textureFile.readlines()
textureFile.close()
m = re.match('(\d+)\s+head',content[0],re.I)
if m != None and options.skip == 0:
options.skip = int(m.group(1))+1
# extract orientation angles
angles = [map(positiveRadians,line.split()[options.column:options.column+3]) for line in content[options.skip:]]
nPoints = len(angles)
sizeY = integerFactorization(nPoints)
sizeX = nPoints / sizeY
print '%s: %i * %i = %i (== %i)'%(baseName,sizeX,sizeY,sizeX*sizeY,nPoints)
# write ang file
try:
# write header
angFile = open(baseName + '.ang','w')
for line in getHeader(sizeX,sizeY,1.0):
angFile.write(line + '\n')
# write data
counter = 0
for point in angles:
angFile.write(''.join(['%10.5f'%angle for angle in point])+
''.join(['%10.5f'%coord for coord in [counter%sizeX,counter//sizeX]])+
' 100.0 1.0 0 1 1.0\n')
counter += 1
angFile.close()
except:
print 'unable to write',baseName