simplified
This commit is contained in:
parent
540428aab7
commit
f1b4d81fb4
|
@ -21,36 +21,42 @@ def findClosestSeed(seeds, weights, point):
|
|||
return np.argmin(np.sum((np.broadcast_to(point,(len(seeds),3))-seeds)**2,axis=1) - weights)
|
||||
|
||||
|
||||
def Laguerre_tessellation(grid, seeds, grains, size, periodic, weights, cpus):
|
||||
def Laguerre_tessellation(grid, size, seeds, weights, origin = np.zeros(3), periodic = True, cpus = 2):
|
||||
|
||||
if periodic:
|
||||
weights_p = np.tile(weights,27).flatten(order='F') # Laguerre weights (1,2,3,1,2,3,...,1,2,3)
|
||||
seeds_p = np.vstack((seeds -np.array([size[0],0.,0.]),seeds, seeds +np.array([size[0],0.,0.])))
|
||||
seeds_p = np.vstack((seeds_p-np.array([0.,size[1],0.]),seeds_p,seeds_p+np.array([0.,size[1],0.])))
|
||||
seeds_p = np.vstack((seeds_p-np.array([0.,0.,size[2]]),seeds_p,seeds_p+np.array([0.,0.,size[2]])))
|
||||
coords = damask.grid_filters.cell_coord0(grid*3,size*3,-origin-size).reshape(-1,3,order='F')
|
||||
else:
|
||||
weights_p = weights.flatten()
|
||||
seeds_p = seeds
|
||||
coords = damask.grid_filters.cell_coord0(grid,size,-origin).reshape(-1,3,order='F')
|
||||
|
||||
if cpus > 1:
|
||||
default_args = partial(findClosestSeed,seeds_p,weights_p)
|
||||
pool = multiprocessing.Pool(processes = cpus) # initialize workers
|
||||
result = pool.map_async(default_args, [point for point in grid]) # evaluate function in parallel
|
||||
pool = multiprocessing.Pool(processes = cpus)
|
||||
result = pool.map_async(partial(findClosestSeed,seeds_p,weights_p), [coord for coord in coords])
|
||||
pool.close()
|
||||
pool.join()
|
||||
closestSeeds = np.array(result.get()).flatten()
|
||||
closest_seed = np.array(result.get())
|
||||
else:
|
||||
closestSeeds= np.array([findClosestSeed(seeds_p,weights_p,point) for point in grid])
|
||||
closest_seed= np.array([findClosestSeed(seeds_p,weights_p,coord) for coord in coords])
|
||||
|
||||
return grains[closestSeeds%seeds.shape[0]]
|
||||
if periodic:
|
||||
closest_seed = closest_seed.reshape(grid[2]*3,grid[1]*3,grid[0]*3)
|
||||
return closest_seed[grid[2]:grid[2]*2,grid[1]:grid[1]*2,grid[0]:grid[0]*2]%seeds.shape[0]
|
||||
else:
|
||||
return closest_seed
|
||||
|
||||
|
||||
def Voronoi_tessellation(grid, seeds, grains, size, periodic = True):
|
||||
def Voronoi_tessellation(grid, size, seeds, origin = np.zeros(3), periodic = True):
|
||||
|
||||
coords = damask.grid_filters.cell_coord0(grid,size,-origin).reshape(-1,3,order='F')
|
||||
KDTree = spatial.cKDTree(seeds,boxsize=size) if periodic else spatial.cKDTree(seeds)
|
||||
devNull,closestSeeds = KDTree.query(grid)
|
||||
devNull,closest_seed = KDTree.query(coords)
|
||||
|
||||
return grains[closestSeeds]
|
||||
return closest_seed
|
||||
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
|
@ -191,13 +197,11 @@ for name in filenames:
|
|||
if options.eulers in table.labels:
|
||||
eulers = table.get(options.eulers)
|
||||
|
||||
coords = damask.grid_filters.cell_coord0(grid,size,-origin).reshape(-1,3,order='F')
|
||||
|
||||
if options.laguerre:
|
||||
indices = Laguerre_tessellation(coords,seeds,grains,size,options.periodic,
|
||||
table.get(options.weight),options.cpus)
|
||||
indices = grains[Laguerre_tessellation(grid,size,seeds,table.get(options.weight),origin,
|
||||
options.periodic,options.cpus)]
|
||||
else:
|
||||
indices = Voronoi_tessellation (coords,seeds,grains,size,options.periodic)
|
||||
indices = grains[Voronoi_tessellation (grid,size,seeds,origin,options.periodic)]
|
||||
|
||||
config_header = []
|
||||
if options.config:
|
||||
|
|
Loading…
Reference in New Issue