[skip sc][skip ci] newer code structure to create DREAM3d files
This commit is contained in:
parent
d70a41a059
commit
f15d1da169
|
@ -7,6 +7,8 @@ import h5py
|
|||
import numpy as np
|
||||
|
||||
import damask
|
||||
from damask import Rotation
|
||||
from damask import Orientation
|
||||
|
||||
class AttributeManagerNullterm(h5py.AttributeManager):
|
||||
"""
|
||||
|
@ -43,93 +45,140 @@ Crystal_structures = {'fcc': 1,
|
|||
'ort': 6} #TODO: is bct Tetragonal low/Tetragonal high?
|
||||
Phase_types = {'Primary': 0} #further additions to these can be done by looking at 'Create Ensemble Info' filter
|
||||
|
||||
class DAMASKtoDREAM3D():
|
||||
"""
|
||||
This class can convert the DAMASK data to DREAM3D compatible data.
|
||||
There can be various different types of ways DAMASK data can be represented.
|
||||
Therefore, there are multiple functions available for different purposes.
|
||||
"""
|
||||
def __init__(self,simulation_folder,job_file,geom_file,load_file):
|
||||
"""
|
||||
Defining the common quantities for all the functions in this class.
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
parser = argparse.ArgumentParser(description='Creating a file for DREAM3D from DAMASK data')
|
||||
parser.add_argument('filenames', nargs='+',
|
||||
help='DADF5 files')
|
||||
parser.add_argument('-d','--dir', dest='dir',default='postProc',metavar='string',
|
||||
help='name of subdirectory relative to the location of the DADF5 file to hold output')
|
||||
parser.add_argument('--inc',nargs='+',
|
||||
help='Increment for which DREAM3D to be used, eg. 25',type=int)
|
||||
Parameters
|
||||
----------
|
||||
simulation_folder: str
|
||||
Path of the simulation folder.
|
||||
job_file: str
|
||||
Name of the job file (DADF5 file).
|
||||
geom_file : str
|
||||
name of the geom file.
|
||||
load_file :
|
||||
name of the load file.
|
||||
"""
|
||||
self.simulation_folder = simulation_folder
|
||||
self.job_file = job_file
|
||||
self.geom_file = geom_file
|
||||
self.load_file = load_file
|
||||
|
||||
options = parser.parse_args()
|
||||
def DAMASKtoDREAM3D(self,dx,inc):
|
||||
"""
|
||||
Creates a dream3D file from DAMASK output.
|
||||
Without any regridding.
|
||||
Considers the original grid from DAMASK.
|
||||
|
||||
for filename in options.filenames:
|
||||
f = damask.Result(filename)
|
||||
N_digits = int(np.floor(np.log10(int(f.increments[-1][3:]))))+1
|
||||
Parameters:
|
||||
-----------
|
||||
dx : float
|
||||
The grid spacing.
|
||||
inc: int
|
||||
increment of interest for DREAM3D processing.
|
||||
"""
|
||||
os.chdir(self.simulation_folder)
|
||||
#--------------------------------------------------------------------------
|
||||
#Build array of euler angles for each cell
|
||||
#--------------------------------------------------------------------------
|
||||
d = damask.Result(self.job_file)
|
||||
inc_data = d.view(increments=inc) # selecting only relevant data to reduce overload
|
||||
|
||||
f.pick('increments',options.inc)
|
||||
for inc in damask.util.show_progress(f.iterate('increments'),len(f.selection['increments'])):
|
||||
dirname = os.path.abspath(os.path.join(os.path.dirname(filename),options.dir))
|
||||
try:
|
||||
os.mkdir(dirname)
|
||||
except FileExistsError:
|
||||
pass
|
||||
f = h5py.File(self.job_file,'r')
|
||||
cells = f['geometry'].attrs['cells']
|
||||
size = f['geometry'].attrs['size']
|
||||
dx = size/cells
|
||||
|
||||
o = h5py.File(dirname + '/' + os.path.splitext(filename)[0] \
|
||||
+ '_inc_{}.dream3D'.format(inc[3:].zfill(N_digits)),'w')
|
||||
O_dict = inc_data.get('O')
|
||||
|
||||
cell_orientation_array = np.zeros((np.prod(cells),3))
|
||||
|
||||
phase_ID_array = np.zeros((np.prod(cells)),dtype=np.int32) #need to reshape it later
|
||||
|
||||
for count,p in enumerate(d.phases):
|
||||
phase_index = np.where(f['cell_to/phase']['label'] == f'{p}'.encode())[0]
|
||||
if len(d.phases) > 1:
|
||||
cell_orientation_array[phase_index,:] = Rotation(O_dict[p]).as_Euler_angles()
|
||||
else:
|
||||
cell_orientation_array[phase_index,:] = Rotation(O_dict).as_Euler_angles()
|
||||
phase_ID_array[phase_index] = count + 1
|
||||
|
||||
#--------------------------------------------------------------------------
|
||||
job_file_no_ext = os.path.splitext(self.job_file)[0]
|
||||
o = h5py.File(f'{job_file_no_ext}_increment{inc}.dream3D','w')
|
||||
o.attrs['DADF5toDREAM3D'] = '1.0'
|
||||
o.attrs['FileVersion'] = '7.0'
|
||||
|
||||
for g in ['DataContainerBundles','Pipeline']: # empty groups (needed)
|
||||
o.create_group(g)
|
||||
o.create_group(g)
|
||||
|
||||
data_container_label = 'DataContainers/ImageDataContainer'
|
||||
data_container_label = 'DataContainers/SyntheticVolumeDataContainer'
|
||||
cell_data_label = data_container_label + '/CellData'
|
||||
|
||||
# Phase information of DREAM.3D is constituent ID in DAMASK
|
||||
o[cell_data_label + '/Phases'] = f.get_constituent_ID().reshape(tuple(f.grid)+(1,))
|
||||
DAMASK_quaternion = f.read_dataset(f.get_dataset_location('orientation'))
|
||||
# Convert: DAMASK uses P = -1, DREAM.3D uses P = +1. Also change position of imagninary part
|
||||
DREAM_3D_quaternion = np.hstack((-DAMASK_quaternion['x'],-DAMASK_quaternion['y'],-DAMASK_quaternion['z'],
|
||||
DAMASK_quaternion['w'])).astype(np.float32)
|
||||
o[cell_data_label + '/Quats'] = DREAM_3D_quaternion.reshape(tuple(f.grid)+(4,))
|
||||
# Data phases
|
||||
o[cell_data_label + '/Phases'] = np.reshape(phase_ID_array, \
|
||||
tuple(np.flip(cells))+(1,))
|
||||
|
||||
# Data eulers
|
||||
orientation_data = cell_orientation_array.astype(np.float32)
|
||||
o[cell_data_label + '/Eulers'] = orientation_data.reshape(tuple(np.flip(cells))+(3,))
|
||||
|
||||
# Attributes to CellData group
|
||||
o[cell_data_label].attrs['AttributeMatrixType'] = np.array([3],np.uint32)
|
||||
o[cell_data_label].attrs['TupleDimensions'] = f.grid.astype(np.uint64)
|
||||
o[cell_data_label].attrs['TupleDimensions'] = np.array(cells,np.uint64)
|
||||
|
||||
# Common Attributes for groups in CellData
|
||||
for group in ['/Phases','/Quats']:
|
||||
o[cell_data_label + group].attrs['DataArrayVersion'] = np.array([2],np.int32)
|
||||
o[cell_data_label + group].attrs['Tuple Axis Dimensions'] = 'x={},y={},z={}'.format(*f.grid)
|
||||
for group in ['/Phases','/Eulers']:
|
||||
o[cell_data_label + group].attrs['DataArrayVersion'] = np.array([2],np.int32)
|
||||
o[cell_data_label + group].attrs['Tuple Axis Dimensions'] = 'x={},y={},z={}'.format(*np.array(cells))
|
||||
|
||||
# phase attributes
|
||||
o[cell_data_label + '/Phases'].attrs['ComponentDimensions'] = np.array([1],np.uint64)
|
||||
o[cell_data_label + '/Phases'].attrs['ObjectType'] = 'DataArray<int32_t>'
|
||||
o[cell_data_label + '/Phases'].attrs['TupleDimensions'] = f.grid.astype(np.uint64)
|
||||
o[cell_data_label + '/Phases'].attrs['TupleDimensions'] = np.array(cells,np.uint64)
|
||||
|
||||
o[cell_data_label + '/Quats'].attrs['ComponentDimensions'] = np.array([4],np.uint64)
|
||||
o[cell_data_label + '/Quats'].attrs['ObjectType'] = 'DataArray<float>'
|
||||
o[cell_data_label + '/Quats'].attrs['TupleDimensions'] = f.grid.astype(np.uint64)
|
||||
# Eulers attributes
|
||||
o[cell_data_label + '/Eulers'].attrs['ComponentDimensions'] = np.array([3],np.uint64)
|
||||
o[cell_data_label + '/Eulers'].attrs['ObjectType'] = 'DataArray<float>'
|
||||
o[cell_data_label + '/Eulers'].attrs['TupleDimensions'] = np.array(cells,np.uint64)
|
||||
|
||||
# Create EnsembleAttributeMatrix
|
||||
ensemble_label = data_container_label + '/EnsembleAttributeMatrix'
|
||||
ensemble_label = data_container_label + '/CellEnsembleData'
|
||||
|
||||
# Data CrystalStructures
|
||||
o[ensemble_label + '/CrystalStructures'] = np.uint32(np.array([999,\
|
||||
Crystal_structures[f.get_crystal_structure()]])).reshape(2,1)
|
||||
o[ensemble_label + '/PhaseTypes'] = np.uint32(np.array([999,Phase_types['Primary']])).reshape(2,1) # ToDo
|
||||
#o[ensemble_label + '/CrystalStructures'] = np.uint32(np.array([999,1]))
|
||||
o[ensemble_label + '/CrystalStructures'] = np.uint32(np.array([999] + [1]*len(d.phases)))
|
||||
# assuming only cubic crystal structures
|
||||
# Damask can give the crystal structure info but need to look into dream3d which crystal structure corresponds to which number
|
||||
o[ensemble_label + '/PhaseTypes'] = np.uint32(np.array([999] + [Phase_types['Primary']]*len(d.phases))).reshape((len(d.phases)+1,1))
|
||||
# also assuming Primary phases
|
||||
# there can be precipitates etc as well
|
||||
|
||||
# Attributes Ensemble Matrix
|
||||
o[ensemble_label].attrs['AttributeMatrixType'] = np.array([11],np.uint32)
|
||||
o[ensemble_label].attrs['TupleDimensions'] = np.array([2], np.uint64)
|
||||
o[ensemble_label].attrs['TupleDimensions'] = np.array([len(d.phases) + 1], np.uint64)
|
||||
|
||||
# Attributes for data in Ensemble matrix
|
||||
for group in ['CrystalStructures','PhaseTypes']: # 'PhaseName' not required MD: But would be nice to take the phase name mapping
|
||||
o[ensemble_label+'/'+group].attrs['ComponentDimensions'] = np.array([1],np.uint64)
|
||||
o[ensemble_label+'/'+group].attrs['Tuple Axis Dimensions'] = 'x=2'
|
||||
o[ensemble_label+'/'+group].attrs['DataArrayVersion'] = np.array([2],np.int32)
|
||||
o[ensemble_label+'/'+group].attrs['ObjectType'] = 'DataArray<uint32_t>'
|
||||
o[ensemble_label+'/'+group].attrs['TupleDimensions'] = np.array([2],np.uint64)
|
||||
o[ensemble_label+'/'+group].attrs['ComponentDimensions'] = np.array([1],np.uint64)
|
||||
o[ensemble_label+'/'+group].attrs['Tuple Axis Dimensions'] = f'x={len(d.phases)+1}'
|
||||
o[ensemble_label+'/'+group].attrs['DataArrayVersion'] = np.array([2],np.int32)
|
||||
o[ensemble_label+'/'+group].attrs['ObjectType'] = 'DataArray<uint32_t>'
|
||||
o[ensemble_label+'/'+group].attrs['TupleDimensions'] = np.array([len(d.phases) + 1],np.uint64)
|
||||
|
||||
# Create geometry info
|
||||
geom_label = data_container_label + '/_SIMPL_GEOMETRY'
|
||||
|
||||
o[geom_label + '/DIMENSIONS'] = np.int64(f.grid)
|
||||
o[geom_label + '/DIMENSIONS'] = np.int64(np.array(cells))
|
||||
o[geom_label + '/ORIGIN'] = np.float32(np.zeros(3))
|
||||
o[geom_label + '/SPACING'] = np.float32(f.size)
|
||||
o[geom_label + '/SPACING'] = np.float32(dx)
|
||||
|
||||
o[geom_label].attrs['GeometryName'] = 'ImageGeometry'
|
||||
o[geom_label].attrs['GeometryTypeName'] = 'ImageGeometry'
|
||||
|
|
|
@ -1,138 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
|
||||
import damask
|
||||
|
||||
class AttributeManagerNullterm(h5py.AttributeManager):
|
||||
"""
|
||||
Attribute management for DREAM.3D hdf5 files.
|
||||
|
||||
String attribute values are stored as fixed-length string with NULLTERM
|
||||
|
||||
References
|
||||
----------
|
||||
https://stackoverflow.com/questions/38267076
|
||||
https://stackoverflow.com/questions/52750232
|
||||
|
||||
"""
|
||||
|
||||
def create(self, name, data, shape=None, dtype=None):
|
||||
if isinstance(data,str):
|
||||
tid = h5py.h5t.C_S1.copy()
|
||||
tid.set_size(len(data + ' '))
|
||||
super().create(name=name,data=data+' ',dtype = h5py.Datatype(tid))
|
||||
else:
|
||||
super().create(name=name,data=data,shape=shape,dtype=dtype)
|
||||
|
||||
|
||||
h5py._hl.attrs.AttributeManager = AttributeManagerNullterm # 'Monkey patch'
|
||||
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# Crystal structure specifications
|
||||
# --------------------------------------------------------------------
|
||||
Crystal_structures = {'fcc': 1,
|
||||
'bcc': 1,
|
||||
'hcp': 0,
|
||||
'bct': 7,
|
||||
'ort': 6} #TODO: is bct Tetragonal low/Tetragonal high?
|
||||
Phase_types = {'Primary': 0} #further additions to these can be done by looking at 'Create Ensemble Info' filter
|
||||
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
parser = argparse.ArgumentParser(description='Creating a file for DREAM3D from DAMASK data')
|
||||
parser.add_argument('filenames', nargs='+',
|
||||
help='DADF5 files')
|
||||
parser.add_argument('-d','--dir', dest='dir',default='postProc',metavar='string',
|
||||
help='name of subdirectory relative to the location of the DADF5 file to hold output')
|
||||
parser.add_argument('--inc',nargs='+',
|
||||
help='Increment for which DREAM3D to be used, eg. 25',type=int)
|
||||
|
||||
options = parser.parse_args()
|
||||
|
||||
for filename in options.filenames:
|
||||
f = damask.Result(filename)
|
||||
N_digits = int(np.floor(np.log10(int(f.increments[-1][3:]))))+1
|
||||
|
||||
f.pick('increments',options.inc)
|
||||
for inc in damask.util.show_progress(f.iterate('increments'),len(f.selection['increments'])):
|
||||
dirname = os.path.abspath(os.path.join(os.path.dirname(filename),options.dir))
|
||||
try:
|
||||
os.mkdir(dirname)
|
||||
except FileExistsError:
|
||||
pass
|
||||
|
||||
o = h5py.File(dirname + '/' + os.path.splitext(filename)[0] \
|
||||
+ '_inc_{}.dream3D'.format(inc[3:].zfill(N_digits)),'w')
|
||||
o.attrs['DADF5toDREAM3D'] = '1.0'
|
||||
o.attrs['FileVersion'] = '7.0'
|
||||
|
||||
for g in ['DataContainerBundles','Pipeline']: # empty groups (needed)
|
||||
o.create_group(g)
|
||||
|
||||
data_container_label = 'DataContainers/ImageDataContainer'
|
||||
cell_data_label = data_container_label + '/CellData'
|
||||
|
||||
# Phase information of DREAM.3D is constituent ID in DAMASK
|
||||
o[cell_data_label + '/Phases'] = f.get_constituent_ID().reshape(tuple(f.grid)+(1,))
|
||||
DAMASK_quaternion = f.read_dataset(f.get_dataset_location('orientation'))
|
||||
# Convert: DAMASK uses P = -1, DREAM.3D uses P = +1. Also change position of imagninary part
|
||||
DREAM_3D_quaternion = np.hstack((-DAMASK_quaternion['x'],-DAMASK_quaternion['y'],-DAMASK_quaternion['z'],
|
||||
DAMASK_quaternion['w'])).astype(np.float32)
|
||||
o[cell_data_label + '/Quats'] = DREAM_3D_quaternion.reshape(tuple(f.grid)+(4,))
|
||||
|
||||
# Attributes to CellData group
|
||||
o[cell_data_label].attrs['AttributeMatrixType'] = np.array([3],np.uint32)
|
||||
o[cell_data_label].attrs['TupleDimensions'] = f.grid.astype(np.uint64)
|
||||
|
||||
# Common Attributes for groups in CellData
|
||||
for group in ['/Phases','/Quats']:
|
||||
o[cell_data_label + group].attrs['DataArrayVersion'] = np.array([2],np.int32)
|
||||
o[cell_data_label + group].attrs['Tuple Axis Dimensions'] = 'x={},y={},z={}'.format(*f.grid)
|
||||
|
||||
o[cell_data_label + '/Phases'].attrs['ComponentDimensions'] = np.array([1],np.uint64)
|
||||
o[cell_data_label + '/Phases'].attrs['ObjectType'] = 'DataArray<int32_t>'
|
||||
o[cell_data_label + '/Phases'].attrs['TupleDimensions'] = f.grid.astype(np.uint64)
|
||||
|
||||
o[cell_data_label + '/Quats'].attrs['ComponentDimensions'] = np.array([4],np.uint64)
|
||||
o[cell_data_label + '/Quats'].attrs['ObjectType'] = 'DataArray<float>'
|
||||
o[cell_data_label + '/Quats'].attrs['TupleDimensions'] = f.grid.astype(np.uint64)
|
||||
|
||||
# Create EnsembleAttributeMatrix
|
||||
ensemble_label = data_container_label + '/EnsembleAttributeMatrix'
|
||||
|
||||
# Data CrystalStructures
|
||||
o[ensemble_label + '/CrystalStructures'] = np.uint32(np.array([999,\
|
||||
Crystal_structures[f.get_crystal_structure()]])).reshape(2,1)
|
||||
o[ensemble_label + '/PhaseTypes'] = np.uint32(np.array([999,Phase_types['Primary']])).reshape(2,1) # ToDo
|
||||
|
||||
# Attributes Ensemble Matrix
|
||||
o[ensemble_label].attrs['AttributeMatrixType'] = np.array([11],np.uint32)
|
||||
o[ensemble_label].attrs['TupleDimensions'] = np.array([2], np.uint64)
|
||||
|
||||
# Attributes for data in Ensemble matrix
|
||||
for group in ['CrystalStructures','PhaseTypes']: # 'PhaseName' not required MD: But would be nice to take the phase name mapping
|
||||
o[ensemble_label+'/'+group].attrs['ComponentDimensions'] = np.array([1],np.uint64)
|
||||
o[ensemble_label+'/'+group].attrs['Tuple Axis Dimensions'] = 'x=2'
|
||||
o[ensemble_label+'/'+group].attrs['DataArrayVersion'] = np.array([2],np.int32)
|
||||
o[ensemble_label+'/'+group].attrs['ObjectType'] = 'DataArray<uint32_t>'
|
||||
o[ensemble_label+'/'+group].attrs['TupleDimensions'] = np.array([2],np.uint64)
|
||||
|
||||
geom_label = data_container_label + '/_SIMPL_GEOMETRY'
|
||||
|
||||
o[geom_label + '/DIMENSIONS'] = np.int64(f.grid)
|
||||
o[geom_label + '/ORIGIN'] = np.float32(np.zeros(3))
|
||||
o[geom_label + '/SPACING'] = np.float32(f.size)
|
||||
|
||||
o[geom_label].attrs['GeometryName'] = 'ImageGeometry'
|
||||
o[geom_label].attrs['GeometryTypeName'] = 'ImageGeometry'
|
||||
o[geom_label].attrs['GeometryType'] = np.array([0],np.uint32)
|
||||
o[geom_label].attrs['SpatialDimensionality'] = np.array([3],np.uint32)
|
||||
o[geom_label].attrs['UnitDimensionality'] = np.array([3],np.uint32)
|
Loading…
Reference in New Issue