Pore nucleation, and the decrease of vacancy concentration due the formation of pores.
This commit is contained in:
parent
3fcb2a6476
commit
f0f04a25bf
|
@ -29,15 +29,23 @@ module vacancy_generation
|
|||
vacancy_generation_freq, &
|
||||
vacancy_generation_formationEnergy, &
|
||||
vacancy_generation_diffusionEnergy, &
|
||||
vacancy_generation_diffusionCoeff0, & !< the temperature-independent pre-exponential of diffusion coefficient D_0
|
||||
vacancy_generation_stressCoeff, &
|
||||
vacancy_generation_jogHeight, & !< the height of jogs in Burgers vectors
|
||||
vacancy_generation_jogSeparation, & !< the jog seperation
|
||||
vacancy_generation_nLatticeSites, & !< the number of lattice sites per unit volume
|
||||
vacancy_generation_burgersVec, & !< the Burgers vector
|
||||
vacancy_generation_dislocationCoeff
|
||||
vacancy_generation_dislocationCoeff, &
|
||||
vacancy_generation_equilibConcentration !< the equilibrium concentration of vacancy
|
||||
|
||||
real(pReal), dimension(:), allocatable, public :: &
|
||||
pore_nucleation_surfaceEnergy, & !< surface energy of metal which controls the necleation of pores
|
||||
pore_nucleation_atomVolume, & !< the volume of atom
|
||||
pore_nucleation_shellThickness, & !< the thickness of spherical shell surrounding the pore
|
||||
pore_nucleation_concentrationCoeff0 !< the pre-exponential of equilibrium concentration of critical pore
|
||||
|
||||
real(pReal), parameter, private :: &
|
||||
kB = 1.38e-23_pReal !< Boltzmann constant in J/Kelvin
|
||||
kB = 1.38e-23_pReal !< Boltzmann constant in J/Kelvin
|
||||
|
||||
enum, bind(c)
|
||||
enumerator :: undefined_ID, &
|
||||
|
@ -139,9 +147,16 @@ subroutine vacancy_generation_init(fileUnit)
|
|||
allocate(vacancy_generation_jogSeparation(maxNinstance), source=0.0_pReal)
|
||||
allocate(vacancy_generation_nLatticeSites(maxNinstance), source=0.0_pReal)
|
||||
allocate(vacancy_generation_burgersVec(maxNinstance), source=0.0_pReal)
|
||||
allocate(vacancy_generation_diffusionCoeff0(maxNinstance), source=0.0_pReal)
|
||||
allocate(vacancy_generation_equilibConcentration(maxNinstance), source=0.0_pReal)
|
||||
|
||||
allocate(vacancy_generation_dislocationCoeff(maxNinstance), source=0.0_pReal)
|
||||
|
||||
allocate(pore_nucleation_surfaceEnergy(maxNinstance), source=0.0_pReal)
|
||||
allocate(pore_nucleation_atomVolume(maxNinstance), source=0.0_pReal)
|
||||
allocate(pore_nucleation_shellThickness(maxNinstance), source=0.0_pReal)
|
||||
allocate(pore_nucleation_concentrationCoeff0(maxNinstance), source=0.0_pReal)
|
||||
|
||||
rewind(fileUnit)
|
||||
phase = 0_pInt
|
||||
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
|
||||
|
@ -175,33 +190,51 @@ subroutine vacancy_generation_init(fileUnit)
|
|||
IO_lc(IO_stringValue(line,positions,2_pInt))
|
||||
end select
|
||||
|
||||
case ('atol_vacancyGeneration')
|
||||
case ('atol_vacancygeneration')
|
||||
vacancy_generation_aTol(instance) = IO_floatValue(line,positions,2_pInt)
|
||||
|
||||
case ('vacancy_frequency')
|
||||
vacancy_generation_freq(instance) = IO_floatValue(line,positions,2_pInt)
|
||||
|
||||
case ('vacancy_formationEnergy')
|
||||
case ('vacancy_formationenergy')
|
||||
vacancy_generation_formationEnergy(instance) = IO_floatValue(line,positions,2_pInt)
|
||||
|
||||
case ('vacancy_diffusionEnergy')
|
||||
case ('vacancy_equilibconcentration')
|
||||
vacancy_generation_equilibConcentration(instance) = IO_floatValue(line,positions,2_pInt)
|
||||
|
||||
case ('vacancy_diffusionenergy')
|
||||
vacancy_generation_diffusionEnergy(instance) = IO_floatValue(line,positions,2_pInt)
|
||||
|
||||
case ('vacancy_stressCoeff')
|
||||
case ('vacancy_diffusioncoeff0')
|
||||
vacancy_generation_diffusionCoeff0(instance) = IO_floatValue(line,positions,2_pInt)
|
||||
|
||||
case ('vacancy_stresscoeff')
|
||||
vacancy_generation_stressCoeff(instance) = IO_floatValue(line,positions,2_pInt)
|
||||
|
||||
case ('vacancy_jogHeight')
|
||||
case ('vacancy_jogheight')
|
||||
vacancy_generation_jogHeight(instance) = IO_floatValue(line,positions,2_pInt)
|
||||
|
||||
case ('vacancy_jogSeparation')
|
||||
case ('vacancy_jogseparation')
|
||||
vacancy_generation_jogSeparation(instance) = IO_floatValue(line,positions,2_pInt)
|
||||
|
||||
case ('vacancy_nLatticeSites')
|
||||
case ('vacancy_nlatticesites')
|
||||
vacancy_generation_nLatticeSites(instance) = IO_floatValue(line,positions,2_pInt)
|
||||
|
||||
case ('vacancy_burgersVec')
|
||||
case ('vacancy_burgersvec')
|
||||
vacancy_generation_burgersVec(instance) = IO_floatValue(line,positions,2_pInt)
|
||||
|
||||
case ('pore_surfacefnergy')
|
||||
pore_nucleation_surfaceEnergy(instance) = IO_floatValue(line,positions,2_pInt)
|
||||
|
||||
case ('pore_atomvolume')
|
||||
pore_nucleation_atomVolume(instance) = IO_floatValue(line,positions,2_pInt)
|
||||
|
||||
case ('pore_shellthickness')
|
||||
pore_nucleation_shellThickness(instance) = IO_floatValue(line,positions,2_pInt)
|
||||
|
||||
case ('pore_concentrationcoeff0')
|
||||
pore_nucleation_concentrationCoeff0(instance) = IO_floatValue(line,positions,2_pInt)
|
||||
|
||||
end select
|
||||
endif; endif
|
||||
enddo parsingFile
|
||||
|
@ -213,7 +246,7 @@ subroutine vacancy_generation_init(fileUnit)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculate the coefficient for dislocation motion induced vacancy generation
|
||||
vacancy_generation_dislocationCoeff(instance) = vacancy_generation_jogHeight(instance)/ &
|
||||
vacancy_generation_dislocationCoeff(instance) = vacancy_generation_jogHeight(instance)/ &
|
||||
vacancy_generation_jogSeparation(instance)/ &
|
||||
vacancy_generation_nLatticeSites(instance)/ &
|
||||
vacancy_generation_burgersVec(instance)/ &
|
||||
|
@ -313,7 +346,8 @@ subroutine vacancy_generation_dotState(nSlip, accumulatedSlip, Tstar_v, Temperat
|
|||
vacancyState
|
||||
use math, only: &
|
||||
math_Mandel6to33, &
|
||||
math_trace33
|
||||
math_trace33, &
|
||||
pi
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: &
|
||||
|
@ -326,22 +360,56 @@ subroutine vacancy_generation_dotState(nSlip, accumulatedSlip, Tstar_v, Temperat
|
|||
real(pReal), intent(in), dimension(6) :: &
|
||||
Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
|
||||
real(pReal), intent(in) :: &
|
||||
Temperature !< 2nd Piola Kirchhoff stress tensor (Mandel)
|
||||
Temperature !< 2nd Piola Kirchhoff stress tensor (Mandel)
|
||||
real(pReal) :: &
|
||||
pressure !< 2nd Piola Kirchhoff stress tensor (Mandel)
|
||||
pressure !< 2nd Piola Kirchhoff stress tensor (Mandel)
|
||||
integer(pInt) :: &
|
||||
instance, phase, constituent
|
||||
real(pReal) :: &
|
||||
vacancyConcentration, & !< current vacancy concentration
|
||||
vacancyDiffusion, & !< the diffusion coefficient D_v
|
||||
poleZeldovichCoeff, & !< Zeldovich factor of pore nucleation
|
||||
vacancyAbsorpRateCoeff, & !< vacancy absorption rate
|
||||
chemicalPotential, & !< the chemical potential due to vacancy concentration
|
||||
criticalRadius, & !< the critical pore radius
|
||||
Gibbs4Pore, & !< the Gibbs free energy for generating a critical pore
|
||||
equilibPoreConcentration, & !< the equilibrium pore concentration
|
||||
nucleationRatePore !< the nucleation rate of pore
|
||||
|
||||
phase = mappingConstitutive(2,ipc,ip,el)
|
||||
constituent = mappingConstitutive(1,ipc,ip,el)
|
||||
instance = phase_vacancyInstance(phase)
|
||||
pressure = math_trace33(math_Mandel6to33(Tstar_v))
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculate nucleation rate of pore
|
||||
vacancyDiffusion = vacancy_generation_diffusionCoeff0(instance)* &
|
||||
exp( -vacancy_generation_diffusionEnergy(instance)/(kB*temperature) )
|
||||
vacancyConcentration = vacancy_generation_getConcentration(ipc, ip, el)
|
||||
chemicalPotential = kB*Temperature * log(vacancyConcentration/ &
|
||||
vacancy_generation_equilibConcentration(instance))
|
||||
criticalRadius = 2_pReal/chemicalPotential* &
|
||||
pore_nucleation_surfaceEnergy(instance) * pore_nucleation_atomVolume(instance)
|
||||
Gibbs4Pore = 4_pReal/3_pReal * pi * pore_nucleation_surfaceEnergy(instance)* &
|
||||
criticalRadius * criticalRadius
|
||||
equilibPoreConcentration = pore_nucleation_concentrationCoeff0(instance)* &
|
||||
exp( -Gibbs4Pore/(kB*temperature) )
|
||||
|
||||
vacancyAbsorpRateCoeff = 2_pReal/pore_nucleation_shellThickness(instance) * &
|
||||
vacancyDiffusion * vacancyConcentration
|
||||
poleZeldovichCoeff = pore_nucleation_atomVolume(instance)* &
|
||||
sqrt( pore_nucleation_surfaceEnergy(instance)/(kB*temperature) )
|
||||
nucleationRatePore = poleZeldovichCoeff * vacancyAbsorpRateCoeff* equilibPoreConcentration
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! the net generating rate vacancy
|
||||
vacancyState(phase)%dotState(1,constituent) = &
|
||||
vacancy_generation_freq(instance)* &
|
||||
exp(-(vacancy_generation_formationEnergy(instance) - vacancy_generation_stressCoeff(instance)*pressure)/ &
|
||||
(kB*Temperature)) + &
|
||||
sum(accumulatedSlip) * vacancy_generation_dislocationCoeff(instance) !< Induced by dislocation motion.
|
||||
sum(accumulatedSlip) * vacancy_generation_dislocationCoeff(instance)- & !< Induced by dislocation motion
|
||||
nucleationRatePore * (4_pReal/3_pReal * pi * criticalRadius**3_pReal)/ & !< Reduced by the formation of pore
|
||||
pore_nucleation_atomVolume(instance)
|
||||
|
||||
end subroutine vacancy_generation_dotState
|
||||
|
||||
|
|
Loading…
Reference in New Issue