vectorized rotation function
This commit is contained in:
parent
68b6aec5f2
commit
f0bb50b97d
|
@ -83,7 +83,7 @@ class Rotation:
|
||||||
Todo
|
Todo
|
||||||
----
|
----
|
||||||
Document details active/passive)
|
Document details active/passive)
|
||||||
considere rotation of (3,3,3,3)-matrix
|
consider rotation of (3,3,3,3)-matrix
|
||||||
|
|
||||||
"""
|
"""
|
||||||
if self.quaternion.shape != (4,):
|
if self.quaternion.shape != (4,):
|
||||||
|
@ -99,9 +99,7 @@ class Rotation:
|
||||||
elif isinstance(other, (tuple,np.ndarray)):
|
elif isinstance(other, (tuple,np.ndarray)):
|
||||||
if isinstance(other,tuple) or other.shape == (3,): # rotate a single (3)-vector or meshgrid
|
if isinstance(other,tuple) or other.shape == (3,): # rotate a single (3)-vector or meshgrid
|
||||||
A = self.quaternion[0]**2.0 - np.dot(self.quaternion[1:],self.quaternion[1:])
|
A = self.quaternion[0]**2.0 - np.dot(self.quaternion[1:],self.quaternion[1:])
|
||||||
B = 2.0 * ( self.quaternion[1]*other[0]
|
B = 2.0 * np.dot(self.quaternion[1:],other)
|
||||||
+ self.quaternion[2]*other[1]
|
|
||||||
+ self.quaternion[3]*other[2])
|
|
||||||
C = 2.0 * _P*self.quaternion[0]
|
C = 2.0 * _P*self.quaternion[0]
|
||||||
|
|
||||||
return np.array([
|
return np.array([
|
||||||
|
@ -119,6 +117,42 @@ class Rotation:
|
||||||
return NotImplemented
|
return NotImplemented
|
||||||
|
|
||||||
|
|
||||||
|
def __matmul__(self, other):
|
||||||
|
"""
|
||||||
|
Rotation.
|
||||||
|
|
||||||
|
details to be discussed
|
||||||
|
"""
|
||||||
|
shape = self.quaternion.shape[:-1]
|
||||||
|
|
||||||
|
if isinstance(other, Rotation): # rotate a rotation
|
||||||
|
q_m = self.quaternion[...,0].reshape(shape+(1,))
|
||||||
|
p_m = self.quaternion[...,1:]
|
||||||
|
q_o = other.quaternion[...,0].reshape(shape+(1,))
|
||||||
|
p_o = other.quaternion[...,1:]
|
||||||
|
q = (q_m*q_o - np.einsum('...i,...i',p_m,p_o).reshape(shape+(1,)))
|
||||||
|
p = q_m*p_m + q_o*p_m + _P * np.cross(p_m,p_o)
|
||||||
|
return self.__class__(np.block([q,p])).standardize()
|
||||||
|
|
||||||
|
elif isinstance(other,np.ndarray):
|
||||||
|
if shape + (3,) == other.shape:
|
||||||
|
q_m = self.quaternion[...,0]
|
||||||
|
p_m = self.quaternion[...,1:]
|
||||||
|
A = q_m**2.0 - np.einsum('...i,...i',p_m,p_m)
|
||||||
|
B = 2.0 * np.einsum('...i,...i',p_m,p_m)
|
||||||
|
C = 2.0 * _P * q_m
|
||||||
|
return np.block([(A * other[...,i]).reshape(shape+(1,)) +
|
||||||
|
(B * p_m[...,i]).reshape(shape+(1,)) +
|
||||||
|
(C * ( p_m[...,(i+1)%3]*other[...,(i+2)%3]\
|
||||||
|
- p_m[...,(i+2)%3]*other[...,(i+1)%3])).reshape(shape+(1,))
|
||||||
|
for i in [0,1,2]])
|
||||||
|
if shape + (3,3) == other.shape:
|
||||||
|
R = self.asMatrix()
|
||||||
|
return np.einsum('...im,...jn,...mn',R,R,other)
|
||||||
|
if shape + (3,3,3,3) == other.shape:
|
||||||
|
R = self.asMatrix()
|
||||||
|
return np.einsum('...im,...jn,...ko,...lp,...mnop',R,R,R,R,other)
|
||||||
|
|
||||||
def inverse(self):
|
def inverse(self):
|
||||||
"""In-place inverse rotation/backward rotation."""
|
"""In-place inverse rotation/backward rotation."""
|
||||||
self.quaternion[...,1:] *= -1
|
self.quaternion[...,1:] *= -1
|
||||||
|
|
Loading…
Reference in New Issue