now working with corrected asciitable

This commit is contained in:
Martin Diehl 2015-05-10 20:59:23 +00:00
parent 71b0e283c1
commit eff71b418b
1 changed files with 38 additions and 49 deletions

View File

@ -71,7 +71,7 @@ parser.set_defaults(coords = 'ipinitialcoord')
(options,filenames) = parser.parse_args()
if (options.vector == None) and (options.tensor == None):
if options.vector == None and options.tensor == None:
parser.error('no data column specified...')
datainfo = { # list of requested labels per datatype
@ -88,35 +88,33 @@ if options.tensor != None: datainfo['tensor']['label'] = options.tensor
# ------------------------------------------ setup file handles ------------------------------------
files = []
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
#--- loop over input files -------------------------------------------------------------------------
for file in files:
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
table = damask.ASCIItable(file['input'],file['output'],True) # make unbuffered ASCII_table
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.data_readArray()
# --------------- figure out columns for coordinates and vector/tensor fields to process ---------
column = defaultdict(dict)
pos = 0 # when reading in the table via data_readArray, the first key is at colum 0
try:
column['coords'] = pos
pos+=3 # advance by data len (columns) for next key
keys=['%i_%s'%(i+1,options.coords) for i in xrange(3)] # store labels for column keys
except ValueError:
try:
column['coords'] = pos
pos+=3 # advance by data len (columns) for next key
directions = ['x','y','z']
keys=['%s.%s'%(options.coords,directions[i]) for i in xrange(3)] # store labels for column keys
except ValueError:
# --------------- figure out name of coordinate data (support for legacy .x notation) -------------
coordLabels=['%i_%s'%(i+1,options.coords) for i in xrange(3)] # store labels for column keys
if not set(coordLabels).issubset(table.labels):
directions = ['x','y','z']
coordLabels=['%s.%s'%(options.coords,directions[i]) for i in xrange(3)] # store labels for column keys
if not set(coordLabels).issubset(table.labels):
file['croak'].write('no coordinate data (1_%s) found...\n'%options.coords)
continue
coordColumns = [table.labels.index(label) for label in coordLabels]
# --------------- figure out active columns -------------------------------------------------------
active = defaultdict(list)
for datatype,info in datainfo.items():
for label in info['label']:
@ -125,13 +123,9 @@ for file in files:
file['croak'].write('column %s not found...\n'%key)
else:
active[datatype].append(label)
column[label] = pos
pos+=datainfo[datatype]['len']
keys+=['%i_%s'%(i+1,label) for i in xrange(datainfo[datatype]['len'])] # extend ASCII header with new labels
table.data_readArray(keys)
# --------------- assemble new header (columns containing curl) -----------------------------------
# --------------- assemble new header (metadata and columns containing curl) ----------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels:
table.labels_append(['divFFT(%s)'%(label) if datatype == 'vector' else
@ -142,10 +136,8 @@ for file in files:
coords = [{},{},{}]
for i in xrange(table.data.shape[0]):
for j in xrange(3):
coords[j][str(table.data[i,j])] = True # remember coordinate along x,y,z
grid = np.array([len(coords[0]),\
len(coords[1]),\
len(coords[2]),],'i') # grid is number of distinct coordinates found
coords[j][str(table.data[i,coordColumns[j]])] = True
grid = np.array(map(len,coords),'i')
size = grid/np.maximum(np.ones(3,'d'),grid-1.0)* \
np.array([max(map(float,coords[0].keys()))-min(map(float,coords[0].keys())),\
max(map(float,coords[1].keys()))-min(map(float,coords[1].keys())),\
@ -155,30 +147,27 @@ for file in files:
if points == 1:
mask = np.ones(3,dtype=bool)
mask[i]=0
size[i] = min(size[mask]/grid[mask]) # third spacing equal to smaller of other spacing
size[i] = min(size[mask]/grid[mask]) # third spacing equal to smaller of other spacing
# ------------------------------------------ process value field -----------------------------------
div = defaultdict(dict)
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested curls
startColumn=table.labels.index('1_'+label)
div[datatype][label] = divFFT(size[::-1], # we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
table.data[:,column[label]:column[label]+datainfo[datatype]['len']].\
table.data[:,startColumn:startColumn+datainfo[datatype]['len']].\
reshape([grid[2],grid[1],grid[0]]+datainfo[datatype]['shape']))
# ------------------------------------------ process data ------------------------------------------
table.data_rewind()
idx = 0
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested norms
table.data_append(list(div[datatype][label][idx,:]))
idx+=1
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
# ------------------------------------------ add data ------------------------------------------
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested curls
for c in xrange(div[datatype][label][0,:].shape[0]): # append column by column
lastRow = table.data.shape[1]
table.data=np.insert(table.data,lastRow,div[datatype][label][:,c],1)
table.input_close() # close input ASCII table
table.output_close() # close output ASCII table
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
# ------------------------------------------ output result -----------------------------------------
table.data_writeArray('%.12g')
table.input_close() # close input ASCII table (works for stdin)
table.output_close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new