more details
This commit is contained in:
parent
61f2ae295b
commit
eefa2c29a2
|
@ -14,7 +14,7 @@ from . import _rotation
|
|||
|
||||
|
||||
def deformation_Cauchy_Green_left(F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
r"""
|
||||
Calculate left Cauchy-Green deformation tensor (Finger deformation tensor).
|
||||
|
||||
Parameters
|
||||
|
@ -27,12 +27,18 @@ def deformation_Cauchy_Green_left(F: _np.ndarray) -> _np.ndarray:
|
|||
B : numpy.ndarray, shape (...,3,3)
|
||||
Left Cauchy-Green deformation tensor.
|
||||
|
||||
Notes
|
||||
-----
|
||||
.. math::
|
||||
|
||||
\vb{B} = \vb{F} \vb{F}^{T}
|
||||
|
||||
"""
|
||||
return _np.matmul(F,_tensor.transpose(F))
|
||||
|
||||
|
||||
def deformation_Cauchy_Green_right(F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
r"""
|
||||
Calculate right Cauchy-Green deformation tensor.
|
||||
|
||||
Parameters
|
||||
|
@ -45,6 +51,12 @@ def deformation_Cauchy_Green_right(F: _np.ndarray) -> _np.ndarray:
|
|||
C : numpy.ndarray, shape (...,3,3)
|
||||
Right Cauchy-Green deformation tensor.
|
||||
|
||||
Notes
|
||||
-----
|
||||
.. math::
|
||||
|
||||
\vb{C} = \vb{F}^{T} \vb{F}
|
||||
|
||||
"""
|
||||
return _np.matmul(_tensor.transpose(F),F)
|
||||
|
||||
|
@ -65,12 +77,15 @@ def equivalent_strain_Mises(epsilon: _np.ndarray) -> _np.ndarray:
|
|||
|
||||
Notes
|
||||
-----
|
||||
The von Mises equivalent of a deviatoric strain tensor is defined as:
|
||||
The von Mises equivalent of a strain tensor is defined as:
|
||||
|
||||
.. math::
|
||||
|
||||
\epsilon_\text{vM} = \sqrt{2/3 \epsilon^\prime_{ij} \epsilon^\prime_{ij}}
|
||||
|
||||
where :math:`\vb{\epsilon}^\prime` is the deviatoric part
|
||||
of the strain tensor.
|
||||
|
||||
"""
|
||||
return _equivalent_Mises(epsilon,2.0/3.0)
|
||||
|
||||
|
@ -91,12 +106,15 @@ def equivalent_stress_Mises(sigma: _np.ndarray) -> _np.ndarray:
|
|||
|
||||
Notes
|
||||
-----
|
||||
The von Mises equivalent of a deviatoric stress tensor is defined as:
|
||||
The von Mises equivalent of a stress tensor is defined as:
|
||||
|
||||
.. math::
|
||||
|
||||
\sigma_\text{vM} = \sqrt{3/2 \sigma^\prime_{ij} \sigma^\prime_{ij}}
|
||||
|
||||
where :math:`\vb{\sigma}^\prime` is the deviatoric part
|
||||
of stress tensor.
|
||||
|
||||
"""
|
||||
return _equivalent_Mises(sigma,3.0/2.0)
|
||||
|
||||
|
|
Loading…
Reference in New Issue