From ee322be870726c89889e77a49ef0d500e23db79f Mon Sep 17 00:00:00 2001 From: chen Date: Fri, 9 Sep 2016 16:17:00 -0400 Subject: [PATCH] use np.histogram2d, fixed list.append bug when using weight column --- processing/post/binXY.py | 28 ++++++++++++++-------------- 1 file changed, 14 insertions(+), 14 deletions(-) diff --git a/processing/post/binXY.py b/processing/post/binXY.py index 4fd635120..2c02b8dcb 100755 --- a/processing/post/binXY.py +++ b/processing/post/binXY.py @@ -20,7 +20,7 @@ Produces a binned grid of two columns from an ASCIItable, i.e. a two-dimensional parser.add_option('-d','--data', dest = 'data', - type='string', nargs = 2, metavar = 'string string', + type = 'string', nargs = 2, metavar = 'string string', help = 'column labels containing x and y ') parser.add_option('-w','--weight', dest = 'weight', @@ -49,15 +49,15 @@ parser.add_option('-z','--zrange', parser.add_option('-i','--invert', dest = 'invert', action = 'store_true', - help = 'invert probability density [%default]') + help = 'invert probability density') parser.add_option('-r','--rownormalize', dest = 'normRow', action = 'store_true', - help = 'normalize probability density in each row [%default]') + help = 'normalize probability density in each row') parser.add_option('-c','--colnormalize', dest = 'normCol', action = 'store_true', - help = 'normalize probability density in each column [%default]') + help = 'normalize probability density in each column') parser.set_defaults(bins = (10,10), type = ('linear','linear','linear'), @@ -79,7 +79,8 @@ result = np.zeros((options.bins[0],options.bins[1],3),'f') if options.data is None: parser.error('no data columns specified.') -labels = options.data +labels = list(options.data) + if options.weight is not None: labels += [options.weight] # prevent character splitting of single string value @@ -106,7 +107,7 @@ for name in filenames: # ------------------------------------------ sanity checks ---------------------------------------- missing_labels = table.data_readArray(labels) - + if len(missing_labels) > 0: damask.util.croak('column{} {} not found.'.format('s' if len(missing_labels) > 1 else '',', '.join(missing_labels))) table.close(dismiss = True) @@ -119,12 +120,11 @@ for name in filenames: minmax[c] = np.log(minmax[c]) # change minmax to log, too delta = minmax[:,1]-minmax[:,0] - - for i in xrange(len(table.data)): - x = int(options.bins[0]*(table.data[i,0]-minmax[0,0])/delta[0]) - y = int(options.bins[1]*(table.data[i,1]-minmax[1,0])/delta[1]) - if x >= 0 and x < options.bins[0] and y >= 0 and y < options.bins[1]: - grid[x,y] += 1. if options.weight is None else table.data[i,2] # count (weighted) occurrences + + (grid,xedges,yedges) = np.histogram2d(table.data[:,0],table.data[:,1], + bins=options.bins, + range=minmax, + weights=None if options.weight is None else table.data[:,2]) if options.normCol: for x in xrange(options.bins[0]): @@ -136,7 +136,7 @@ for name in filenames: sum = np.sum(grid[:,y]) if sum > 0.0: grid[:,y] /= sum - + if (minmax[2] == 0.0).all(): minmax[2] = [grid.min(),grid.max()] # auto scale from data if minmax[2,0] == minmax[2,1]: minmax[2,0] -= 1. @@ -147,7 +147,7 @@ for name in filenames: if options.type[2].lower() == 'log': grid = np.log(grid) minmax[2] = np.log(minmax[2]) - + delta[2] = minmax[2,1]-minmax[2,0] for x in xrange(options.bins[0]):