shorter, potential for higher precision

np.sum has an better alogrithm but fails ...
This commit is contained in:
Martin Diehl 2022-02-16 23:23:03 +01:00
parent 9fc6469b13
commit ed50cd022b
2 changed files with 5 additions and 9 deletions

View File

@ -1567,11 +1567,7 @@ class Rotation:
+0.000059719705868660826, -0.00001980756723965647,
+0.000003953714684212874, -0.00000036555001439719544])
hmag_squared = np.sum(ho**2.,axis=-1,keepdims=True)
hm = hmag_squared.copy()
s = tfit[0] + tfit[1] * hmag_squared
for i in range(2,16):
hm *= hmag_squared
s += tfit[i] * hm
s = sum([t*hmag_squared**i for i,t in enumerate(tfit)]) # np.sum fails due to higher precision
with np.errstate(invalid='ignore'):
ax = np.where(np.broadcast_to(np.abs(hmag_squared)<1.e-8,ho.shape[:-1]+(4,)),
[ 0.0, 0.0, 1.0, 0.0 ],

View File

@ -313,13 +313,13 @@ def ho2ax(ho):
if iszero(hmag_squared):
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
else:
hm = hmag_squared
hm = np.ones_like(hmag_squared)
# convert the magnitude to the rotation angle
s = tfit[0] + tfit[1] * hmag_squared
for i in range(2,16):
s = 0.0
for t in tfit:
s += t * hm
hm *= hmag_squared
s += tfit[i] * hm
ax = np.append(ho/np.sqrt(hmag_squared),2.0*np.arccos(np.clip(s,-1.0,1.0)))
return ax