Merge branch 'rename-grid-2' into misc-improvements

This commit is contained in:
Martin Diehl 2020-12-05 09:50:46 +01:00
commit ed286ee09f
97 changed files with 607 additions and 567 deletions

@ -1 +1 @@
Subproject commit 68cde52291ebb683ca6f610879f2ae28372597a7 Subproject commit a0475c50bfaf6f86f75345754188918a6e9d7134

View File

@ -1 +1 @@
v3.0.0-alpha-884-g1c29a517a v3.0.0-alpha-920-gccf1a849f

View File

@ -27,4 +27,4 @@ for sub_dir in ['pre','post']:
sys.stdout.write('\npruning broken links...\n') sys.stdout.write('\npruning broken links...\n')
for filename in bin_dir.glob('*'): for filename in bin_dir.glob('*'):
if not filename.is_file(): if not filename.is_file():
filename.unlink filename.unlink()

View File

@ -33,12 +33,12 @@ for filename in options.filenames:
results = damask.Result(filename) results = damask.Result(filename)
if not results.structured: continue if not results.structured: continue
coords = damask.grid_filters.cell_coord0(results.grid,results.size,results.origin).reshape(-1,3,order='F') coords = damask.grid_filters.coordinates0_point(results.cells,results.size,results.origin).reshape(-1,3,order='F')
N_digits = int(np.floor(np.log10(int(results.increments[-1][3:]))))+1 N_digits = int(np.floor(np.log10(int(results.increments[-1][3:]))))+1
N_digits = 5 # hack to keep test intact N_digits = 5 # hack to keep test intact
for inc in damask.util.show_progress(results.iterate('increments'),len(results.increments)): for inc in damask.util.show_progress(results.iterate('increments'),len(results.increments)):
table = damask.Table(np.ones(np.product(results.grid),dtype=int)*int(inc[3:]),{'inc':(1,)})\ table = damask.Table(np.ones(np.product(results.cells),dtype=int)*int(inc[3:]),{'inc':(1,)})\
.add('pos',coords.reshape(-1,3)) .add('pos',coords.reshape(-1,3))
results.pick('homogenizations',False) results.pick('homogenizations',False)
@ -46,14 +46,14 @@ for filename in options.filenames:
for label in options.con: for label in options.con:
x = results.get_dataset_location(label) x = results.get_dataset_location(label)
if len(x) != 0: if len(x) != 0:
table = table.add(label,results.read_dataset(x,0,plain=True).reshape(results.grid.prod(),-1)) table = table.add(label,results.read_dataset(x,0,plain=True).reshape(results.cells.prod(),-1))
results.pick('phases',False) results.pick('phases',False)
results.pick('homogenizations',True) results.pick('homogenizations',True)
for label in options.mat: for label in options.mat:
x = results.get_dataset_location(label) x = results.get_dataset_location(label)
if len(x) != 0: if len(x) != 0:
table = table.add(label,results.read_dataset(x,0,plain=True).reshape(results.grid.prod(),-1)) table = table.add(label,results.read_dataset(x,0,plain=True).reshape(results.cells.prod(),-1))
dirname = os.path.abspath(os.path.join(os.path.dirname(filename),options.dir)) dirname = os.path.abspath(os.path.join(os.path.dirname(filename),options.dir))
if not os.path.isdir(dirname): if not os.path.isdir(dirname):

View File

@ -71,13 +71,13 @@ for name in filenames:
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
table = damask.Table.load(StringIO(''.join(sys.stdin.read())) if name is None else name) table = damask.Table.load(StringIO(''.join(sys.stdin.read())) if name is None else name)
grid,size,origin = damask.grid_filters.cell_coord0_gridSizeOrigin(table.get(options.pos)) grid,size,origin = damask.grid_filters.cellSizeOrigin_coordinates0_point(table.get(options.pos))
F = table.get(options.defgrad).reshape(tuple(grid)+(-1,),order='F').reshape(tuple(grid)+(3,3)) F = table.get(options.defgrad).reshape(tuple(grid)+(-1,),order='F').reshape(tuple(grid)+(3,3))
nodes = damask.grid_filters.node_coord(size,F) nodes = damask.grid_filters.coordinates_node(size,F)
if options.shape: if options.shape:
centers = damask.grid_filters.cell_coord(size,F) centers = damask.grid_filters.coordinates_point(size,F)
shapeMismatch = shapeMismatch(size,F,nodes,centers) shapeMismatch = shapeMismatch(size,F,nodes,centers)
table = table.add('shapeMismatch(({}))'.format(options.defgrad), table = table.add('shapeMismatch(({}))'.format(options.defgrad),
shapeMismatch.reshape(-1,1,order='F'), shapeMismatch.reshape(-1,1,order='F'),

View File

@ -44,7 +44,7 @@ for name in filenames:
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
table = damask.Table.load(StringIO(''.join(sys.stdin.read())) if name is None else name) table = damask.Table.load(StringIO(''.join(sys.stdin.read())) if name is None else name)
grid,size,origin = damask.grid_filters.cell_coord0_gridSizeOrigin(table.get(options.pos)) grid,size,origin = damask.grid_filters.cellSizeOrigin_coordinates0_point(table.get(options.pos))
for label in options.labels: for label in options.labels:
field = table.get(label) field = table.get(label)

View File

@ -48,24 +48,24 @@ for name in filenames:
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
table = damask.Table.load(StringIO(''.join(sys.stdin.read())) if name is None else name) table = damask.Table.load(StringIO(''.join(sys.stdin.read())) if name is None else name)
grid,size,origin = damask.grid_filters.cell_coord0_gridSizeOrigin(table.get(options.pos)) grid,size,origin = damask.grid_filters.cellSizeOrigin_coordinates0_point(table.get(options.pos))
F = table.get(options.f).reshape(tuple(grid)+(-1,),order='F').reshape(tuple(grid)+(3,3)) F = table.get(options.f).reshape(tuple(grid)+(-1,),order='F').reshape(tuple(grid)+(3,3))
if options.nodal: if options.nodal:
damask.Table(damask.grid_filters.node_coord0(grid,size).reshape(-1,3,order='F'), damask.Table(damask.grid_filters.coordinates0_node(grid,size).reshape(-1,3,order='F'),
{'pos':(3,)})\ {'pos':(3,)})\
.add('avg({}).{}'.format(options.f,options.pos), .add('avg({}).{}'.format(options.f,options.pos),
damask.grid_filters.node_displacement_avg(size,F).reshape(-1,3,order='F'), damask.grid_filters.displacement_avg_node(size,F).reshape(-1,3,order='F'),
scriptID+' '+' '.join(sys.argv[1:]))\ scriptID+' '+' '.join(sys.argv[1:]))\
.add('fluct({}).{}'.format(options.f,options.pos), .add('fluct({}).{}'.format(options.f,options.pos),
damask.grid_filters.node_displacement_fluct(size,F).reshape(-1,3,order='F'), damask.grid_filters.displacement_fluct_node(size,F).reshape(-1,3,order='F'),
scriptID+' '+' '.join(sys.argv[1:]))\ scriptID+' '+' '.join(sys.argv[1:]))\
.save((sys.stdout if name is None else os.path.splitext(name)[0]+'_nodal.txt')) .save((sys.stdout if name is None else os.path.splitext(name)[0]+'_nodal.txt'))
else: else:
table.add('avg({}).{}'.format(options.f,options.pos), table.add('avg({}).{}'.format(options.f,options.pos),
damask.grid_filters.cell_displacement_avg(size,F).reshape(-1,3,order='F'), damask.grid_filters.displacement_avg_point(size,F).reshape(-1,3,order='F'),
scriptID+' '+' '.join(sys.argv[1:]))\ scriptID+' '+' '.join(sys.argv[1:]))\
.add('fluct({}).{}'.format(options.f,options.pos), .add('fluct({}).{}'.format(options.f,options.pos),
damask.grid_filters.cell_displacement_fluct(size,F).reshape(-1,3,order='F'), damask.grid_filters.displacement_fluct_point(size,F).reshape(-1,3,order='F'),
scriptID+' '+' '.join(sys.argv[1:]))\ scriptID+' '+' '.join(sys.argv[1:]))\
.save((sys.stdout if name is None else name)) .save((sys.stdout if name is None else name))

View File

@ -44,7 +44,7 @@ for name in filenames:
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
table = damask.Table.load(StringIO(''.join(sys.stdin.read())) if name is None else name) table = damask.Table.load(StringIO(''.join(sys.stdin.read())) if name is None else name)
grid,size,origin = damask.grid_filters.cell_coord0_gridSizeOrigin(table.get(options.pos)) grid,size,origin = damask.grid_filters.cellSizeOrigin_coordinates0_point(table.get(options.pos))
for label in options.labels: for label in options.labels:
field = table.get(label) field = table.get(label)

View File

@ -143,7 +143,7 @@ for name in filenames:
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
table = damask.Table.load(StringIO(''.join(sys.stdin.read())) if name is None else name) table = damask.Table.load(StringIO(''.join(sys.stdin.read())) if name is None else name)
grid,size,origin = damask.grid_filters.cell_coord0_gridSizeOrigin(table.get(options.pos)) grid,size,origin = damask.grid_filters.cellSizeOrigin_coordinates0_point(table.get(options.pos))
neighborhood = neighborhoods[options.neighborhood] neighborhood = neighborhoods[options.neighborhood]
diffToNeighbor = np.empty(list(grid+2)+[len(neighborhood)],'i') diffToNeighbor = np.empty(list(grid+2)+[len(neighborhood)],'i')

View File

@ -44,7 +44,7 @@ for name in filenames:
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
table = damask.Table.load(StringIO(''.join(sys.stdin.read())) if name is None else name) table = damask.Table.load(StringIO(''.join(sys.stdin.read())) if name is None else name)
grid,size,origin = damask.grid_filters.cell_coord0_gridSizeOrigin(table.get(options.pos)) grid,size,origin = damask.grid_filters.cellSizeOrigin_coordinates0_point(table.get(options.pos))
for label in options.labels: for label in options.labels:
field = table.get(label) field = table.get(label)

View File

@ -65,7 +65,7 @@ if filenames == []: parser.error('no input file specified.')
for name in filenames: for name in filenames:
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
geom = damask.Geom.load_DREAM3D(name,options.basegroup,options.pointwise) geom = damask.Grid.load_DREAM3D(name,options.basegroup,options.pointwise)
damask.util.croak(geom) damask.util.croak(geom)
geom.save_ASCII(os.path.splitext(name)[0]+'.geom') geom.save_ASCII(os.path.splitext(name)[0]+'.geom')

View File

@ -133,7 +133,7 @@ for i in range(3,np.max(microstructure)):
header = [scriptID + ' ' + ' '.join(sys.argv[1:])]\ header = [scriptID + ' ' + ' '.join(sys.argv[1:])]\
+ config_header + config_header
geom = damask.Geom(microstructure.reshape(grid), geom = damask.Grid(microstructure.reshape(grid),
size,-size/2, size,-size/2,
comments=header) comments=header)
damask.util.croak(geom) damask.util.croak(geom)

View File

@ -62,9 +62,9 @@ if filenames == []: filenames = [None]
for name in filenames: for name in filenames:
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
geom = damask.Geom.load(StringIO(''.join(sys.stdin.read())) if name is None else name) geom = damask.Grid.load(StringIO(''.join(sys.stdin.read())) if name is None else name)
grid_original = geom.grid grid_original = geom.cells
damask.util.croak(geom) damask.util.croak(geom)
material = np.tile(geom.material,np.where(grid_original == 1, 2,1)) # make one copy along dimensions with grid == 1 material = np.tile(geom.material,np.where(grid_original == 1, 2,1)) # make one copy along dimensions with grid == 1
grid = np.array(material.shape) grid = np.array(material.shape)
@ -169,7 +169,7 @@ for name in filenames:
# undo any changes involving immutable materials # undo any changes involving immutable materials
material = np.where(immutable, material_original,material) material = np.where(immutable, material_original,material)
damask.Geom(material = material[0:grid_original[0],0:grid_original[1],0:grid_original[2]], damask.Grid(material = material[0:grid_original[0],0:grid_original[1],0:grid_original[2]],
size = geom.size, size = geom.size,
origin = geom.origin, origin = geom.origin,
comments = geom.comments + [scriptID + ' ' + ' '.join(sys.argv[1:])], comments = geom.comments + [scriptID + ' ' + ' '.join(sys.argv[1:])],

View File

@ -196,12 +196,12 @@ if filenames == []: filenames = [None]
for name in filenames: for name in filenames:
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
geom = damask.Geom.load(StringIO(''.join(sys.stdin.read())) if name is None else name) geom = damask.Grid.load(StringIO(''.join(sys.stdin.read())) if name is None else name)
material = geom.material.flatten(order='F') material = geom.material.flatten(order='F')
cmds = [\ cmds = [\
init(), init(),
mesh(geom.grid,geom.size), mesh(geom.cells,geom.size),
materials(), materials(),
geometry(), geometry(),
initial_conditions(material), initial_conditions(material),

View File

@ -91,7 +91,7 @@ class myThread (threading.Thread):
perturbedSeedsTable.set('pos',coords).save(perturbedSeedsVFile,legacy=True) perturbedSeedsTable.set('pos',coords).save(perturbedSeedsVFile,legacy=True)
#--- do tesselation with perturbed seed file ------------------------------------------------------ #--- do tesselation with perturbed seed file ------------------------------------------------------
perturbedGeom = damask.Geom.from_Voronoi_tessellation(options.grid,np.ones(3),coords) perturbedGeom = damask.Grid.from_Voronoi_tessellation(options.grid,np.ones(3),coords)
#--- evaluate current seeds file ------------------------------------------------------------------ #--- evaluate current seeds file ------------------------------------------------------------------
@ -210,9 +210,9 @@ baseFile = os.path.splitext(os.path.basename(options.seedFile))[0]
points = np.array(options.grid).prod().astype('float') points = np.array(options.grid).prod().astype('float')
# ----------- calculate target distribution and bin edges # ----------- calculate target distribution and bin edges
targetGeom = damask.Geom.load_ASCII(os.path.splitext(os.path.basename(options.target))[0]+'.geom') targetGeom = damask.Grid.load_ASCII(os.path.splitext(os.path.basename(options.target))[0]+'.geom')
nMaterials = len(np.unique(targetGeom.material)) nMaterials = len(np.unique(targetGeom.material))
targetVolFrac = np.bincount(targetGeom.material.flatten())/targetGeom.grid.prod().astype(np.float) targetVolFrac = np.bincount(targetGeom.material.flatten())/targetGeom.cells.prod().astype(np.float)
target = [] target = []
for i in range(1,nMaterials+1): for i in range(1,nMaterials+1):
targetHist,targetBins = np.histogram(targetVolFrac,bins=i) #bin boundaries targetHist,targetBins = np.histogram(targetVolFrac,bins=i) #bin boundaries
@ -229,7 +229,7 @@ bestSeedsUpdate = time.time()
# ----------- tessellate initial seed file to get and evaluate geom file # ----------- tessellate initial seed file to get and evaluate geom file
bestSeedsVFile.seek(0) bestSeedsVFile.seek(0)
initialGeom = damask.Geom.from_Voronoi_tessellation(options.grid,np.ones(3),initial_seeds) initialGeom = damask.Grid.from_Voronoi_tessellation(options.grid,np.ones(3),initial_seeds)
if len(np.unique(targetGeom.material)) != nMaterials: if len(np.unique(targetGeom.material)) != nMaterials:
damask.util.croak('error. Material count mismatch') damask.util.croak('error. Material count mismatch')

View File

@ -52,15 +52,15 @@ options.box = np.array(options.box).reshape(3,2)
for name in filenames: for name in filenames:
damask.util.report(scriptName,name) damask.util.report(scriptName,name)
geom = damask.Geom.load_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name) geom = damask.Grid.load_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
offset =(np.amin(options.box, axis=1)*geom.grid/geom.size).astype(int) offset =(np.amin(options.box, axis=1)*geom.cells/geom.size).astype(int)
box = np.amax(options.box, axis=1) \ box = np.amax(options.box, axis=1) \
- np.amin(options.box, axis=1) - np.amin(options.box, axis=1)
Nx = int(options.N/np.sqrt(options.N*geom.size[1]*box[1]/geom.size[0]/box[0])) Nx = int(options.N/np.sqrt(options.N*geom.size[1]*box[1]/geom.size[0]/box[0]))
Ny = int(options.N/np.sqrt(options.N*geom.size[0]*box[0]/geom.size[1]/box[1])) Ny = int(options.N/np.sqrt(options.N*geom.size[0]*box[0]/geom.size[1]/box[1]))
Nz = int(box[2]*geom.grid[2]) Nz = int(box[2]*geom.cells[2])
damask.util.croak('poking {} x {} x {} in box {} {} {}...'.format(Nx,Ny,Nz,*box)) damask.util.croak('poking {} x {} x {} in box {} {} {}...'.format(Nx,Ny,Nz,*box))
@ -70,12 +70,12 @@ for name in filenames:
n = 0 n = 0
for i in range(Nx): for i in range(Nx):
for j in range(Ny): for j in range(Ny):
g[0] = round((i+0.5)*box[0]*geom.grid[0]/Nx-0.5)+offset[0] g[0] = round((i+0.5)*box[0]*geom.cells[0]/Nx-0.5)+offset[0]
g[1] = round((j+0.5)*box[1]*geom.grid[1]/Ny-0.5)+offset[1] g[1] = round((j+0.5)*box[1]*geom.cells[1]/Ny-0.5)+offset[1]
for k in range(Nz): for k in range(Nz):
g[2] = k + offset[2] g[2] = k + offset[2]
g %= geom.grid g %= geom.cells
seeds[n,0:3] = (g+0.5)/geom.grid # normalize coordinates to box seeds[n,0:3] = (g+0.5)/geom.cells # normalize coordinates to box
seeds[n, 3] = geom.material[g[0],g[1],g[2]] seeds[n, 3] = geom.material[g[0],g[1],g[2]]
if options.x: g[0] += 1 if options.x: g[0] += 1
if options.y: g[1] += 1 if options.y: g[1] += 1
@ -85,7 +85,7 @@ for name in filenames:
comments = geom.comments \ comments = geom.comments \
+ [scriptID + ' ' + ' '.join(sys.argv[1:]), + [scriptID + ' ' + ' '.join(sys.argv[1:]),
'poking\ta {}\tb {}\tc {}'.format(Nx,Ny,Nz), 'poking\ta {}\tb {}\tc {}'.format(Nx,Ny,Nz),
'grid\ta {}\tb {}\tc {}'.format(*geom.grid), 'grid\ta {}\tb {}\tc {}'.format(*geom.cells),
'size\tx {}\ty {}\tz {}'.format(*geom.size), 'size\tx {}\ty {}\tz {}'.format(*geom.size),
'origin\tx {}\ty {}\tz {}'.format(*geom.origin), 'origin\tx {}\ty {}\tz {}'.format(*geom.origin),
] ]

View File

@ -32,7 +32,7 @@ from ._vtk import VTK # noqa
from ._colormap import Colormap # noqa from ._colormap import Colormap # noqa
from ._config import Config # noqa from ._config import Config # noqa
from ._configmaterial import ConfigMaterial # noqa from ._configmaterial import ConfigMaterial # noqa
from ._geom import Geom # noqa from ._grid import Grid # noqa
from ._result import Result # noqa from ._result import Result # noqa

View File

@ -385,3 +385,38 @@ class ASCIItable():
self.data = np.loadtxt(self.__IO__['in'],usecols=use,ndmin=2) self.data = np.loadtxt(self.__IO__['in'],usecols=use,ndmin=2)
return labels_missing return labels_missing
# ------------------------------------------------------------------
def data_write(self):
"""Write current data array and report alive output back."""
if len(self.data) == 0: return True
if isinstance(self.data[0],list):
return self.output_write(['\t'.join(map(self._quote,items)) for items in self.data])
else:
return self.output_write( '\t'.join(map(self._quote,self.data)))
# ------------------------------------------------------------------
def data_writeArray(self):
"""Write whole numpy array data."""
for row in self.data:
try:
output = list(map(repr,row))
except Exception:
output = [repr(row)]
try:
self.__IO__['out'].write('\t'.join(output) + '\n')
except Exception:
pass
# ------------------------------------------------------------------
def data_append(self,
what):
if isinstance(what, str):
self.data += [what]
else:
try:
for item in what: self.data_append(item)
except TypeError:
self.data += [str(what)]

View File

@ -225,7 +225,7 @@ class Colormap(mpl.colors.ListedColormap):
def save_paraview(self,fname=None): def save_paraview(self,fname=None):
""" """
Write colormap to JSON file for Paraview. Save as JSON file for use in Paraview.
Parameters Parameters
---------- ----------
@ -260,7 +260,7 @@ class Colormap(mpl.colors.ListedColormap):
def save_ASCII(self,fname=None): def save_ASCII(self,fname=None):
""" """
Write colormap to ASCII table. Save as ASCII file.
Parameters Parameters
---------- ----------
@ -286,7 +286,7 @@ class Colormap(mpl.colors.ListedColormap):
def save_GOM(self,fname=None): def save_GOM(self,fname=None):
""" """
Write colormap to GOM Aramis compatible format. Save as ASCII file for use in GOM Aramis.
Parameters Parameters
---------- ----------
@ -314,7 +314,7 @@ class Colormap(mpl.colors.ListedColormap):
def save_gmsh(self,fname=None): def save_gmsh(self,fname=None):
""" """
Write colormap to Gmsh compatible format. Save as ASCII file for use in gmsh.
Parameters Parameters
---------- ----------

View File

@ -16,21 +16,21 @@ from . import grid_filters
from . import Rotation from . import Rotation
class Geom: class Grid:
"""Geometry definition for grid solvers.""" """Geometry definition for grid solvers."""
def __init__(self,material,size,origin=[0.0,0.0,0.0],comments=[]): def __init__(self,material,size,origin=[0.0,0.0,0.0],comments=[]):
""" """
New geometry definition from array of materials, size, and origin. New grid definition from array of materials, size, and origin.
Parameters Parameters
---------- ----------
material : numpy.ndarray material : numpy.ndarray
Material index array (3D). Material index array (3D).
size : list or numpy.ndarray size : list or numpy.ndarray
Physical size of the geometry in meter. Physical size of the grid in meter.
origin : list or numpy.ndarray, optional origin : list or numpy.ndarray, optional
Physical origin of the geometry in meter. Physical origin of the grid in meter.
comments : list of str, optional comments : list of str, optional
Comment lines. Comment lines.
@ -42,9 +42,9 @@ class Geom:
def __repr__(self): def __repr__(self):
"""Basic information on geometry definition.""" """Basic information on grid definition."""
return util.srepr([ return util.srepr([
f'grid a b c: {util.srepr(self.grid, " x ")}', f'cells a b c: {util.srepr(self.cells, " x ")}',
f'size x y z: {util.srepr(self.size, " x ")}', f'size x y z: {util.srepr(self.size, " x ")}',
f'origin x y z: {util.srepr(self.origin," ")}', f'origin x y z: {util.srepr(self.origin," ")}',
f'# materials: {self.N_materials}', f'# materials: {self.N_materials}',
@ -53,12 +53,12 @@ class Geom:
def __copy__(self): def __copy__(self):
"""Copy geometry.""" """Copy grid."""
return copy.deepcopy(self) return copy.deepcopy(self)
def copy(self): def copy(self):
"""Copy geometry.""" """Copy grid."""
return self.__copy__() return self.__copy__()
@ -68,14 +68,14 @@ class Geom:
Parameters Parameters
---------- ----------
other : Geom other : damask.Grid
Geometry to compare self against. Grid to compare self against.
""" """
message = [] message = []
if np.any(other.grid != self.grid): if np.any(other.cells != self.cells):
message.append(util.deemph(f'grid a b c: {util.srepr(other.grid," x ")}')) message.append(util.deemph(f'cells a b c: {util.srepr(other.cells," x ")}'))
message.append(util.emph( f'grid a b c: {util.srepr( self.grid," x ")}')) message.append(util.emph( f'cells a b c: {util.srepr( self.cells," x ")}'))
if not np.allclose(other.size,self.size): if not np.allclose(other.size,self.size):
message.append(util.deemph(f'size x y z: {util.srepr(other.size," x ")}')) message.append(util.deemph(f'size x y z: {util.srepr(other.size," x ")}'))
@ -117,7 +117,7 @@ class Geom:
@property @property
def size(self): def size(self):
"""Physical size of geometry in meter.""" """Physical size of grid in meter."""
return self._size return self._size
@size.setter @size.setter
@ -129,7 +129,7 @@ class Geom:
@property @property
def origin(self): def origin(self):
"""Coordinates of geometry origin in meter.""" """Coordinates of grid origin in meter."""
return self._origin return self._origin
@origin.setter @origin.setter
@ -141,7 +141,7 @@ class Geom:
@property @property
def comments(self): def comments(self):
"""Comments/history of geometry.""" """Comments, e.g. history of operations."""
return self._comments return self._comments
@comments.setter @comments.setter
@ -150,35 +150,35 @@ class Geom:
@property @property
def grid(self): def cells(self):
"""Grid dimension of geometry.""" """Number of cells in x,y,z direction."""
return np.asarray(self.material.shape) return np.asarray(self.material.shape)
@property @property
def N_materials(self): def N_materials(self):
"""Number of (unique) material indices within geometry.""" """Number of (unique) material indices within grid."""
return np.unique(self.material).size return np.unique(self.material).size
@staticmethod @staticmethod
def load(fname): def load(fname):
""" """
Read a VTK rectilinear grid. Load from VTK rectilinear grid file.
Parameters Parameters
---------- ----------
fname : str or or pathlib.Path fname : str or or pathlib.Path
Geometry file to read. Grid file to read. Valid extension is .vtr, which will be appended
Valid extension is .vtr, which will be appended if not given. if not given.
""" """
v = VTK.load(fname if str(fname).endswith('.vtr') else str(fname)+'.vtr') v = VTK.load(fname if str(fname).endswith('.vtr') else str(fname)+'.vtr')
comments = v.get_comments() comments = v.get_comments()
grid = np.array(v.vtk_data.GetDimensions())-1 cells = np.array(v.vtk_data.GetDimensions())-1
bbox = np.array(v.vtk_data.GetBounds()).reshape(3,2).T bbox = np.array(v.vtk_data.GetBounds()).reshape(3,2).T
return Geom(material = v.get('material').reshape(grid,order='F'), return Grid(material = v.get('material').reshape(cells,order='F'),
size = bbox[1] - bbox[0], size = bbox[1] - bbox[0],
origin = bbox[0], origin = bbox[0],
comments=comments) comments=comments)
@ -187,7 +187,7 @@ class Geom:
@staticmethod @staticmethod
def load_ASCII(fname): def load_ASCII(fname):
""" """
Read a geom file. Load from geom file.
Storing geometry files in ASCII format is deprecated. Storing geometry files in ASCII format is deprecated.
This function will be removed in a future version of DAMASK. This function will be removed in a future version of DAMASK.
@ -219,7 +219,7 @@ class Geom:
items = line.split('#')[0].lower().strip().split() items = line.split('#')[0].lower().strip().split()
key = items[0] if items else '' key = items[0] if items else ''
if key == 'grid': if key == 'grid':
grid = np.array([ int(dict(zip(items[1::2],items[2::2]))[i]) for i in ['a','b','c']]) cells = np.array([ int(dict(zip(items[1::2],items[2::2]))[i]) for i in ['a','b','c']])
elif key == 'size': elif key == 'size':
size = np.array([float(dict(zip(items[1::2],items[2::2]))[i]) for i in ['x','y','z']]) size = np.array([float(dict(zip(items[1::2],items[2::2]))[i]) for i in ['x','y','z']])
elif key == 'origin': elif key == 'origin':
@ -227,7 +227,7 @@ class Geom:
else: else:
comments.append(line.strip()) comments.append(line.strip())
material = np.empty(grid.prod()) # initialize as flat array material = np.empty(cells.prod()) # initialize as flat array
i = 0 i = 0
for line in content[header_length:]: for line in content[header_length:]:
items = line.split('#')[0].split() items = line.split('#')[0].split()
@ -242,19 +242,19 @@ class Geom:
material[i:i+len(items)] = items material[i:i+len(items)] = items
i += len(items) i += len(items)
if i != grid.prod(): if i != cells.prod():
raise TypeError(f'Invalid file: expected {grid.prod()} entries, found {i}') raise TypeError(f'Invalid file: expected {cells.prod()} entries, found {i}')
if not np.any(np.mod(material,1) != 0.0): # no float present if not np.any(np.mod(material,1) != 0.0): # no float present
material = material.astype('int') - (1 if material.min() > 0 else 0) material = material.astype('int') - (1 if material.min() > 0 else 0)
return Geom(material.reshape(grid,order='F'),size,origin,comments) return Grid(material.reshape(cells,order='F'),size,origin,comments)
@staticmethod @staticmethod
def load_DREAM3D(fname,base_group,point_data=None,material='FeatureIds'): def load_DREAM3D(fname,base_group,point_data=None,material='FeatureIds'):
""" """
Load a DREAM.3D file. Load from DREAM.3D file.
Parameters Parameters
---------- ----------
@ -274,21 +274,21 @@ class Geom:
root_dir ='DataContainers' root_dir ='DataContainers'
f = h5py.File(fname, 'r') f = h5py.File(fname, 'r')
g = path.join(root_dir,base_group,'_SIMPL_GEOMETRY') g = path.join(root_dir,base_group,'_SIMPL_GEOMETRY')
grid = f[path.join(g,'DIMENSIONS')][()] cells = f[path.join(g,'DIMENSIONS')][()]
size = f[path.join(g,'SPACING')][()] * grid size = f[path.join(g,'SPACING')][()] * cells
origin = f[path.join(g,'ORIGIN')][()] origin = f[path.join(g,'ORIGIN')][()]
ma = np.arange(grid.prod(),dtype=int) \ ma = np.arange(cells.prod(),dtype=int) \
if point_data is None else \ if point_data is None else \
np.reshape(f[path.join(root_dir,base_group,point_data,material)],grid.prod()) np.reshape(f[path.join(root_dir,base_group,point_data,material)],cells.prod())
return Geom(ma.reshape(grid,order='F'),size,origin,util.execution_stamp('Geom','load_DREAM3D')) return Grid(ma.reshape(cells,order='F'),size,origin,util.execution_stamp('Grid','load_DREAM3D'))
@staticmethod @staticmethod
def from_table(table,coordinates,labels): def from_table(table,coordinates,labels):
""" """
Derive geometry from an ASCII table. Generate grid from ASCII table.
Parameters Parameters
---------- ----------
@ -302,15 +302,15 @@ class Geom:
Each unique combintation of values results in one material ID. Each unique combintation of values results in one material ID.
""" """
grid,size,origin = grid_filters.cell_coord0_gridSizeOrigin(table.get(coordinates)) cells,size,origin = grid_filters.cellSizeOrigin_coordinates0_point(table.get(coordinates))
labels_ = [labels] if isinstance(labels,str) else labels labels_ = [labels] if isinstance(labels,str) else labels
unique,unique_inverse = np.unique(np.hstack([table.get(l) for l in labels_]),return_inverse=True,axis=0) unique,unique_inverse = np.unique(np.hstack([table.get(l) for l in labels_]),return_inverse=True,axis=0)
ma = np.arange(grid.prod()) if len(unique) == grid.prod() else \ ma = np.arange(cells.prod()) if len(unique) == cells.prod() else \
np.arange(unique.size)[np.argsort(pd.unique(unique_inverse))][unique_inverse] np.arange(unique.size)[np.argsort(pd.unique(unique_inverse))][unique_inverse]
return Geom(ma.reshape(grid,order='F'),size,origin,util.execution_stamp('Geom','from_table')) return Grid(ma.reshape(cells,order='F'),size,origin,util.execution_stamp('Grid','from_table'))
@staticmethod @staticmethod
@ -318,16 +318,16 @@ class Geom:
return np.argmin(np.sum((np.broadcast_to(point,(len(seeds),3))-seeds)**2,axis=1) - weights) return np.argmin(np.sum((np.broadcast_to(point,(len(seeds),3))-seeds)**2,axis=1) - weights)
@staticmethod @staticmethod
def from_Laguerre_tessellation(grid,size,seeds,weights,material=None,periodic=True): def from_Laguerre_tessellation(cells,size,seeds,weights,material=None,periodic=True):
""" """
Generate geometry from Laguerre tessellation. Generate grid from Laguerre tessellation.
Parameters Parameters
---------- ----------
grid : int numpy.ndarray of shape (3) cells : int numpy.ndarray of shape (3)
Number of grid points in x,y,z direction. Number of cells in x,y,z direction.
size : list or numpy.ndarray of shape (3) size : list or numpy.ndarray of shape (3)
Physical size of the geometry in meter. Physical size of the grid in meter.
seeds : numpy.ndarray of shape (:,3) seeds : numpy.ndarray of shape (:,3)
Position of the seed points in meter. All points need to lay within the box. Position of the seed points in meter. All points need to lay within the box.
weights : numpy.ndarray of shape (seeds.shape[0]) weights : numpy.ndarray of shape (seeds.shape[0])
@ -336,7 +336,7 @@ class Geom:
Material ID of the seeds. Material ID of the seeds.
Defaults to None, in which case materials are consecutively numbered. Defaults to None, in which case materials are consecutively numbered.
periodic : Boolean, optional periodic : Boolean, optional
Perform a periodic tessellation. Defaults to True. Assume grid to be periodic. Defaults to True.
""" """
if periodic: if periodic:
@ -344,57 +344,57 @@ class Geom:
seeds_p = np.vstack((seeds -np.array([size[0],0.,0.]),seeds, seeds +np.array([size[0],0.,0.]))) seeds_p = np.vstack((seeds -np.array([size[0],0.,0.]),seeds, seeds +np.array([size[0],0.,0.])))
seeds_p = np.vstack((seeds_p-np.array([0.,size[1],0.]),seeds_p,seeds_p+np.array([0.,size[1],0.]))) seeds_p = np.vstack((seeds_p-np.array([0.,size[1],0.]),seeds_p,seeds_p+np.array([0.,size[1],0.])))
seeds_p = np.vstack((seeds_p-np.array([0.,0.,size[2]]),seeds_p,seeds_p+np.array([0.,0.,size[2]]))) seeds_p = np.vstack((seeds_p-np.array([0.,0.,size[2]]),seeds_p,seeds_p+np.array([0.,0.,size[2]])))
coords = grid_filters.cell_coord0(grid*3,size*3,-size).reshape(-1,3) coords = grid_filters.coordinates0_point(cells*3,size*3,-size).reshape(-1,3)
else: else:
weights_p = weights weights_p = weights
seeds_p = seeds seeds_p = seeds
coords = grid_filters.cell_coord0(grid,size).reshape(-1,3) coords = grid_filters.coordinates0_point(cells,size).reshape(-1,3)
pool = mp.Pool(processes = int(environment.options['DAMASK_NUM_THREADS'])) pool = mp.Pool(processes = int(environment.options['DAMASK_NUM_THREADS']))
result = pool.map_async(partial(Geom._find_closest_seed,seeds_p,weights_p), [coord for coord in coords]) result = pool.map_async(partial(Grid._find_closest_seed,seeds_p,weights_p), [coord for coord in coords])
pool.close() pool.close()
pool.join() pool.join()
material_ = np.array(result.get()) material_ = np.array(result.get())
if periodic: if periodic:
material_ = material_.reshape(grid*3) material_ = material_.reshape(cells*3)
material_ = material_[grid[0]:grid[0]*2,grid[1]:grid[1]*2,grid[2]:grid[2]*2]%seeds.shape[0] material_ = material_[cells[0]:cells[0]*2,cells[1]:cells[1]*2,cells[2]:cells[2]*2]%seeds.shape[0]
else: else:
material_ = material_.reshape(grid) material_ = material_.reshape(cells)
return Geom(material = material_ if material is None else material[material_], return Grid(material = material_ if material is None else material[material_],
size = size, size = size,
comments = util.execution_stamp('Geom','from_Laguerre_tessellation'), comments = util.execution_stamp('Grid','from_Laguerre_tessellation'),
) )
@staticmethod @staticmethod
def from_Voronoi_tessellation(grid,size,seeds,material=None,periodic=True): def from_Voronoi_tessellation(cells,size,seeds,material=None,periodic=True):
""" """
Generate geometry from Voronoi tessellation. Generate grid from Voronoi tessellation.
Parameters Parameters
---------- ----------
grid : int numpy.ndarray of shape (3) cells : int numpy.ndarray of shape (3)
Number of grid points in x,y,z direction. Number of cells in x,y,z direction.
size : list or numpy.ndarray of shape (3) size : list or numpy.ndarray of shape (3)
Physical size of the geometry in meter. Physical size of the grid in meter.
seeds : numpy.ndarray of shape (:,3) seeds : numpy.ndarray of shape (:,3)
Position of the seed points in meter. All points need to lay within the box. Position of the seed points in meter. All points need to lay within the box.
material : numpy.ndarray of shape (seeds.shape[0]), optional material : numpy.ndarray of shape (seeds.shape[0]), optional
Material ID of the seeds. Material ID of the seeds.
Defaults to None, in which case materials are consecutively numbered. Defaults to None, in which case materials are consecutively numbered.
periodic : Boolean, optional periodic : Boolean, optional
Perform a periodic tessellation. Defaults to True. Assume grid to be periodic. Defaults to True.
""" """
coords = grid_filters.cell_coord0(grid,size).reshape(-1,3) coords = grid_filters.coordinates0_point(cells,size).reshape(-1,3)
KDTree = spatial.cKDTree(seeds,boxsize=size) if periodic else spatial.cKDTree(seeds) KDTree = spatial.cKDTree(seeds,boxsize=size) if periodic else spatial.cKDTree(seeds)
devNull,material_ = KDTree.query(coords) devNull,material_ = KDTree.query(coords)
return Geom(material = (material_ if material is None else material[material_]).reshape(grid), return Grid(material = (material_ if material is None else material[material_]).reshape(cells),
size = size, size = size,
comments = util.execution_stamp('Geom','from_Voronoi_tessellation'), comments = util.execution_stamp('Grid','from_Voronoi_tessellation'),
) )
@ -441,16 +441,16 @@ class Geom:
@staticmethod @staticmethod
def from_minimal_surface(grid,size,surface,threshold=0.0,periods=1,materials=(0,1)): def from_minimal_surface(cells,size,surface,threshold=0.0,periods=1,materials=(0,1)):
""" """
Generate geometry from definition of triply periodic minimal surface. Generate grid from definition of triply periodic minimal surface.
Parameters Parameters
---------- ----------
grid : int numpy.ndarray of shape (3) cells : int numpy.ndarray of shape (3)
Number of grid points in x,y,z direction. Number of cells in x,y,z direction.
size : list or numpy.ndarray of shape (3) size : list or numpy.ndarray of shape (3)
Physical size of the geometry in meter. Physical size of the grid in meter.
surface : str surface : str
Type of the minimal surface. See notes for details. Type of the minimal surface. See notes for details.
threshold : float, optional. threshold : float, optional.
@ -493,19 +493,19 @@ class Geom:
https://doi.org/10.1016/j.simpa.2020.100026 https://doi.org/10.1016/j.simpa.2020.100026
""" """
x,y,z = np.meshgrid(periods*2.0*np.pi*(np.arange(grid[0])+0.5)/grid[0], x,y,z = np.meshgrid(periods*2.0*np.pi*(np.arange(cells[0])+0.5)/cells[0],
periods*2.0*np.pi*(np.arange(grid[1])+0.5)/grid[1], periods*2.0*np.pi*(np.arange(cells[1])+0.5)/cells[1],
periods*2.0*np.pi*(np.arange(grid[2])+0.5)/grid[2], periods*2.0*np.pi*(np.arange(cells[2])+0.5)/cells[2],
indexing='ij',sparse=True) indexing='ij',sparse=True)
return Geom(material = np.where(threshold < Geom._minimal_surface[surface](x,y,z),materials[1],materials[0]), return Grid(material = np.where(threshold < Grid._minimal_surface[surface](x,y,z),materials[1],materials[0]),
size = size, size = size,
comments = util.execution_stamp('Geom','from_minimal_surface'), comments = util.execution_stamp('Grid','from_minimal_surface'),
) )
def save(self,fname,compress=True): def save(self,fname,compress=True):
""" """
Store as VTK rectilinear grid. Save as VTK rectilinear grid file.
Parameters Parameters
---------- ----------
@ -515,7 +515,7 @@ class Geom:
Compress with zlib algorithm. Defaults to True. Compress with zlib algorithm. Defaults to True.
""" """
v = VTK.from_rectilinear_grid(self.grid,self.size,self.origin) v = VTK.from_rectilinear_grid(self.cells,self.size,self.origin)
v.add(self.material.flatten(order='F'),'material') v.add(self.material.flatten(order='F'),'material')
v.add_comments(self.comments) v.add_comments(self.comments)
@ -524,7 +524,7 @@ class Geom:
def save_ASCII(self,fname): def save_ASCII(self,fname):
""" """
Write a geom file. Save as geom file.
Storing geometry files in ASCII format is deprecated. Storing geometry files in ASCII format is deprecated.
This function will be removed in a future version of DAMASK. This function will be removed in a future version of DAMASK.
@ -539,7 +539,7 @@ class Geom:
""" """
warnings.warn('Support for ASCII-based geom format will be removed in DAMASK 3.1.0', DeprecationWarning) warnings.warn('Support for ASCII-based geom format will be removed in DAMASK 3.1.0', DeprecationWarning)
header = [f'{len(self.comments)+4} header'] + self.comments \ header = [f'{len(self.comments)+4} header'] + self.comments \
+ ['grid a {} b {} c {}'.format(*self.grid), + ['grid a {} b {} c {}'.format(*self.cells),
'size x {} y {} z {}'.format(*self.size), 'size x {} y {} z {}'.format(*self.size),
'origin x {} y {} z {}'.format(*self.origin), 'origin x {} y {} z {}'.format(*self.origin),
'homogenization 1', 'homogenization 1',
@ -548,13 +548,13 @@ class Geom:
format_string = '%g' if self.material.dtype in np.sctypes['float'] else \ format_string = '%g' if self.material.dtype in np.sctypes['float'] else \
'%{}i'.format(1+int(np.floor(np.log10(np.nanmax(self.material))))) '%{}i'.format(1+int(np.floor(np.log10(np.nanmax(self.material)))))
np.savetxt(fname, np.savetxt(fname,
self.material.reshape([self.grid[0],np.prod(self.grid[1:])],order='F').T, self.material.reshape([self.cells[0],np.prod(self.cells[1:])],order='F').T,
header='\n'.join(header), fmt=format_string, comments='') header='\n'.join(header), fmt=format_string, comments='')
def show(self): def show(self):
"""Show on screen.""" """Show on screen."""
VTK.from_rectilinear_grid(self.grid,self.size,self.origin).show() VTK.from_rectilinear_grid(self.cells,self.size,self.origin).show()
def add_primitive(self,dimension,center,exponent, def add_primitive(self,dimension,center,exponent,
@ -566,11 +566,10 @@ class Geom:
---------- ----------
dimension : int or float numpy.ndarray of shape (3) dimension : int or float numpy.ndarray of shape (3)
Dimension (diameter/side length) of the primitive. If given as Dimension (diameter/side length) of the primitive. If given as
integers, grid point locations (cell centers) are addressed. integers, cell centers are addressed.
If given as floats, coordinates are addressed. If given as floats, coordinates are addressed.
center : int or float numpy.ndarray of shape (3) center : int or float numpy.ndarray of shape (3)
Center of the primitive. If given as integers, grid point Center of the primitive. If given as integers, cell centers are addressed.
coordinates (cell centers) are addressed.
If given as floats, coordinates in space are addressed. If given as floats, coordinates in space are addressed.
exponent : numpy.ndarray of shape (3) or float exponent : numpy.ndarray of shape (3) or float
Exponents for the three axes. Exponents for the three axes.
@ -584,44 +583,44 @@ class Geom:
Retain original materials within primitive and fill outside. Retain original materials within primitive and fill outside.
Defaults to False. Defaults to False.
periodic : Boolean, optional periodic : Boolean, optional
Repeat primitive over boundaries. Defaults to True. Assume grid to be periodic. Defaults to True.
""" """
# radius and center # radius and center
r = np.array(dimension)/2.0*self.size/self.grid if np.array(dimension).dtype in np.sctypes['int'] else \ r = np.array(dimension)/2.0*self.size/self.cells if np.array(dimension).dtype in np.sctypes['int'] else \
np.array(dimension)/2.0 np.array(dimension)/2.0
c = (np.array(center) + .5)*self.size/self.grid if np.array(center).dtype in np.sctypes['int'] else \ c = (np.array(center) + .5)*self.size/self.cells if np.array(center).dtype in np.sctypes['int'] else \
(np.array(center) - self.origin) (np.array(center) - self.origin)
coords = grid_filters.cell_coord0(self.grid,self.size, coords = grid_filters.coordinates0_point(self.cells,self.size,
-(0.5*(self.size + (self.size/self.grid -(0.5*(self.size + (self.size/self.cells
if np.array(center).dtype in np.sctypes['int'] else if np.array(center).dtype in np.sctypes['int'] else
0)) if periodic else c)) 0)) if periodic else c))
coords_rot = R.broadcast_to(tuple(self.grid))@coords coords_rot = R.broadcast_to(tuple(self.cells))@coords
with np.errstate(all='ignore'): with np.errstate(all='ignore'):
mask = np.sum(np.power(coords_rot/r,2.0**np.array(exponent)),axis=-1) > 1.0 mask = np.sum(np.power(coords_rot/r,2.0**np.array(exponent)),axis=-1) > 1.0
if periodic: # translate back to center if periodic: # translate back to center
mask = np.roll(mask,((c/self.size-0.5)*self.grid).round().astype(int),(0,1,2)) mask = np.roll(mask,((c/self.size-0.5)*self.cells).round().astype(int),(0,1,2))
return Geom(material = np.where(np.logical_not(mask) if inverse else mask, return Grid(material = np.where(np.logical_not(mask) if inverse else mask,
self.material, self.material,
np.nanmax(self.material)+1 if fill is None else fill), np.nanmax(self.material)+1 if fill is None else fill),
size = self.size, size = self.size,
origin = self.origin, origin = self.origin,
comments = self.comments+[util.execution_stamp('Geom','add_primitive')], comments = self.comments+[util.execution_stamp('Grid','add_primitive')],
) )
def mirror(self,directions,reflect=False): def mirror(self,directions,reflect=False):
""" """
Mirror geometry along given directions. Mirror grid along given directions.
Parameters Parameters
---------- ----------
directions : iterable containing str directions : iterable containing str
Direction(s) along which the geometry is mirrored. Direction(s) along which the grid is mirrored.
Valid entries are 'x', 'y', 'z'. Valid entries are 'x', 'y', 'z'.
reflect : bool, optional reflect : bool, optional
Reflect (include) outermost layers. Defaults to False. Reflect (include) outermost layers. Defaults to False.
@ -641,21 +640,21 @@ class Geom:
if 'z' in directions: if 'z' in directions:
mat = np.concatenate([mat,mat[:,:,limits[0]:limits[1]:-1]],2) mat = np.concatenate([mat,mat[:,:,limits[0]:limits[1]:-1]],2)
return Geom(material = mat, return Grid(material = mat,
size = self.size/self.grid*np.asarray(mat.shape), size = self.size/self.cells*np.asarray(mat.shape),
origin = self.origin, origin = self.origin,
comments = self.comments+[util.execution_stamp('Geom','mirror')], comments = self.comments+[util.execution_stamp('Grid','mirror')],
) )
def flip(self,directions): def flip(self,directions):
""" """
Flip geometry along given directions. Flip grid along given directions.
Parameters Parameters
---------- ----------
directions : iterable containing str directions : iterable containing str
Direction(s) along which the geometry is flipped. Direction(s) along which the grid is flipped.
Valid entries are 'x', 'y', 'z'. Valid entries are 'x', 'y', 'z'.
""" """
@ -665,28 +664,28 @@ class Geom:
mat = np.flip(self.material, (valid.index(d) for d in directions if d in valid)) mat = np.flip(self.material, (valid.index(d) for d in directions if d in valid))
return Geom(material = mat, return Grid(material = mat,
size = self.size, size = self.size,
origin = self.origin, origin = self.origin,
comments = self.comments+[util.execution_stamp('Geom','flip')], comments = self.comments+[util.execution_stamp('Grid','flip')],
) )
def scale(self,grid,periodic=True): def scale(self,cells,periodic=True):
""" """
Scale geometry to new grid. Scale grid to new cells.
Parameters Parameters
---------- ----------
grid : numpy.ndarray of shape (3) cells : numpy.ndarray of shape (3)
Number of grid points in x,y,z direction. Number of cells in x,y,z direction.
periodic : Boolean, optional periodic : Boolean, optional
Assume geometry to be periodic. Defaults to True. Assume grid to be periodic. Defaults to True.
""" """
return Geom(material = ndimage.interpolation.zoom( return Grid(material = ndimage.interpolation.zoom(
self.material, self.material,
grid/self.grid, cells/self.cells,
output=self.material.dtype, output=self.material.dtype,
order=0, order=0,
mode=('wrap' if periodic else 'nearest'), mode=('wrap' if periodic else 'nearest'),
@ -694,13 +693,13 @@ class Geom:
), ),
size = self.size, size = self.size,
origin = self.origin, origin = self.origin,
comments = self.comments+[util.execution_stamp('Geom','scale')], comments = self.comments+[util.execution_stamp('Grid','scale')],
) )
def clean(self,stencil=3,selection=None,periodic=True): def clean(self,stencil=3,selection=None,periodic=True):
""" """
Smooth geometry by selecting most frequent material index within given stencil at each location. Smooth grid by selecting most frequent material index within given stencil at each location.
Parameters Parameters
---------- ----------
@ -709,7 +708,7 @@ class Geom:
selection : list, optional selection : list, optional
Field values that can be altered. Defaults to all. Field values that can be altered. Defaults to all.
periodic : Boolean, optional periodic : Boolean, optional
Assume geometry to be periodic. Defaults to True. Assume grid to be periodic. Defaults to True.
""" """
def mostFrequent(arr,selection=None): def mostFrequent(arr,selection=None):
@ -720,7 +719,7 @@ class Geom:
else: else:
return me return me
return Geom(material = ndimage.filters.generic_filter( return Grid(material = ndimage.filters.generic_filter(
self.material, self.material,
mostFrequent, mostFrequent,
size=(stencil if selection is None else stencil//2*2+1,)*3, size=(stencil if selection is None else stencil//2*2+1,)*3,
@ -729,7 +728,7 @@ class Geom:
).astype(self.material.dtype), ).astype(self.material.dtype),
size = self.size, size = self.size,
origin = self.origin, origin = self.origin,
comments = self.comments+[util.execution_stamp('Geom','clean')], comments = self.comments+[util.execution_stamp('Grid','clean')],
) )
@ -737,21 +736,21 @@ class Geom:
"""Renumber sorted material indices as 0,...,N-1.""" """Renumber sorted material indices as 0,...,N-1."""
_,renumbered = np.unique(self.material,return_inverse=True) _,renumbered = np.unique(self.material,return_inverse=True)
return Geom(material = renumbered.reshape(self.grid), return Grid(material = renumbered.reshape(self.cells),
size = self.size, size = self.size,
origin = self.origin, origin = self.origin,
comments = self.comments+[util.execution_stamp('Geom','renumber')], comments = self.comments+[util.execution_stamp('Grid','renumber')],
) )
def rotate(self,R,fill=None): def rotate(self,R,fill=None):
""" """
Rotate geometry (pad if required). Rotate grid (pad if required).
Parameters Parameters
---------- ----------
R : damask.Rotation R : damask.Rotation
Rotation to apply to the geometry. Rotation to apply to the grid.
fill : int or float, optional fill : int or float, optional
Material index to fill the corners. Defaults to material.max() + 1. Material index to fill the corners. Defaults to material.max() + 1.
@ -773,25 +772,25 @@ class Geom:
else: else:
material_in = material_out material_in = material_out
origin = self.origin-(np.asarray(material_in.shape)-self.grid)*.5 * self.size/self.grid origin = self.origin-(np.asarray(material_in.shape)-self.cells)*.5 * self.size/self.cells
return Geom(material = material_in, return Grid(material = material_in,
size = self.size/self.grid*np.asarray(material_in.shape), size = self.size/self.cells*np.asarray(material_in.shape),
origin = origin, origin = origin,
comments = self.comments+[util.execution_stamp('Geom','rotate')], comments = self.comments+[util.execution_stamp('Grid','rotate')],
) )
def canvas(self,grid=None,offset=None,fill=None): def canvas(self,cells=None,offset=None,fill=None):
""" """
Crop or enlarge/pad geometry. Crop or enlarge/pad grid.
Parameters Parameters
---------- ----------
grid : numpy.ndarray of shape (3) cells : numpy.ndarray of shape (3)
Number of grid points in x,y,z direction. Number of cells x,y,z direction.
offset : numpy.ndarray of shape (3) offset : numpy.ndarray of shape (3)
Offset (measured in grid points) from old to new geometry [0,0,0]. Offset (measured in cells) from old to new grid [0,0,0].
fill : int or float, optional fill : int or float, optional
Material index to fill the background. Defaults to material.max() + 1. Material index to fill the background. Defaults to material.max() + 1.
@ -800,19 +799,19 @@ class Geom:
if fill is None: fill = np.nanmax(self.material) + 1 if fill is None: fill = np.nanmax(self.material) + 1
dtype = float if int(fill) != fill or self.material.dtype in np.sctypes['float'] else int dtype = float if int(fill) != fill or self.material.dtype in np.sctypes['float'] else int
canvas = np.full(self.grid if grid is None else grid,fill,dtype) canvas = np.full(self.cells if cells is None else cells,fill,dtype)
LL = np.clip( offset, 0,np.minimum(self.grid, grid+offset)) LL = np.clip( offset, 0,np.minimum(self.cells, cells+offset))
UR = np.clip( offset+grid, 0,np.minimum(self.grid, grid+offset)) UR = np.clip( offset+cells, 0,np.minimum(self.cells, cells+offset))
ll = np.clip(-offset, 0,np.minimum( grid,self.grid-offset)) ll = np.clip(-offset, 0,np.minimum( cells,self.cells-offset))
ur = np.clip(-offset+self.grid,0,np.minimum( grid,self.grid-offset)) ur = np.clip(-offset+self.cells,0,np.minimum( cells,self.cells-offset))
canvas[ll[0]:ur[0],ll[1]:ur[1],ll[2]:ur[2]] = self.material[LL[0]:UR[0],LL[1]:UR[1],LL[2]:UR[2]] canvas[ll[0]:ur[0],ll[1]:ur[1],ll[2]:ur[2]] = self.material[LL[0]:UR[0],LL[1]:UR[1],LL[2]:UR[2]]
return Geom(material = canvas, return Grid(material = canvas,
size = self.size/self.grid*np.asarray(canvas.shape), size = self.size/self.cells*np.asarray(canvas.shape),
origin = self.origin+offset*self.size/self.grid, origin = self.origin+offset*self.size/self.cells,
comments = self.comments+[util.execution_stamp('Geom','canvas')], comments = self.comments+[util.execution_stamp('Grid','canvas')],
) )
@ -834,10 +833,10 @@ class Geom:
mp = np.vectorize(mp) mp = np.vectorize(mp)
mapper = dict(zip(from_material,to_material)) mapper = dict(zip(from_material,to_material))
return Geom(material = mp(self.material,mapper).reshape(self.grid), return Grid(material = mp(self.material,mapper).reshape(self.cells),
size = self.size, size = self.size,
origin = self.origin, origin = self.origin,
comments = self.comments+[util.execution_stamp('Geom','substitute')], comments = self.comments+[util.execution_stamp('Grid','substitute')],
) )
@ -848,10 +847,10 @@ class Geom:
sort_idx = np.argsort(from_ma) sort_idx = np.argsort(from_ma)
ma = np.unique(a)[sort_idx][np.searchsorted(from_ma,a,sorter = sort_idx)] ma = np.unique(a)[sort_idx][np.searchsorted(from_ma,a,sorter = sort_idx)]
return Geom(material = ma.reshape(self.grid,order='F'), return Grid(material = ma.reshape(self.cells,order='F'),
size = self.size, size = self.size,
origin = self.origin, origin = self.origin,
comments = self.comments+[util.execution_stamp('Geom','sort')], comments = self.comments+[util.execution_stamp('Grid','sort')],
) )
@ -861,7 +860,7 @@ class Geom:
Different from themselves (or listed as triggers) within a given (cubic) vicinity, Different from themselves (or listed as triggers) within a given (cubic) vicinity,
i.e. within the region close to a grain/phase boundary. i.e. within the region close to a grain/phase boundary.
ToDo: use include/exclude as in seeds.from_geom ToDo: use include/exclude as in seeds.from_grid
Parameters Parameters
---------- ----------
@ -875,7 +874,7 @@ class Geom:
List of material indices that trigger a change. List of material indices that trigger a change.
Defaults to [], meaning that any different neighbor triggers a change. Defaults to [], meaning that any different neighbor triggers a change.
periodic : Boolean, optional periodic : Boolean, optional
Assume geometry to be periodic. Defaults to True. Assume grid to be periodic. Defaults to True.
""" """
def tainted_neighborhood(stencil,trigger): def tainted_neighborhood(stencil,trigger):
@ -892,10 +891,10 @@ class Geom:
mode='wrap' if periodic else 'nearest', mode='wrap' if periodic else 'nearest',
extra_keywords={'trigger':trigger}) extra_keywords={'trigger':trigger})
return Geom(material = np.where(mask, self.material + offset_,self.material), return Grid(material = np.where(mask, self.material + offset_,self.material),
size = self.size, size = self.size,
origin = self.origin, origin = self.origin,
comments = self.comments+[util.execution_stamp('Geom','vicinity_offset')], comments = self.comments+[util.execution_stamp('Grid','vicinity_offset')],
) )
@ -905,10 +904,10 @@ class Geom:
Parameters Parameters
---------- ----------
periodic : bool, optional periodic : Boolean, optional
Show boundaries across periodicity. Defaults to True. Assume grid to be periodic. Defaults to True.
directions : iterable containing str, optional directions : iterable containing str, optional
Direction(s) along which the geometry is mirrored. Direction(s) along which the boundaries are determined.
Valid entries are 'x', 'y', 'z'. Defaults to 'xyz'. Valid entries are 'x', 'y', 'z'. Defaults to 'xyz'.
""" """
@ -916,9 +915,9 @@ class Geom:
if not set(directions).issubset(valid): if not set(directions).issubset(valid):
raise ValueError(f'Invalid direction {set(directions).difference(valid)} specified.') raise ValueError(f'Invalid direction {set(directions).difference(valid)} specified.')
o = [[0, self.grid[0]+1, np.prod(self.grid[:2]+1)+self.grid[0]+1, np.prod(self.grid[:2]+1)], o = [[0, self.cells[0]+1, np.prod(self.cells[:2]+1)+self.cells[0]+1, np.prod(self.cells[:2]+1)],
[0, np.prod(self.grid[:2]+1), np.prod(self.grid[:2]+1)+1, 1], [0, np.prod(self.cells[:2]+1), np.prod(self.cells[:2]+1)+1, 1],
[0, 1, self.grid[0]+1+1, self.grid[0]+1]] # offset for connectivity [0, 1, self.cells[0]+1+1, self.cells[0]+1]] # offset for connectivity
connectivity = [] connectivity = []
for i,d in enumerate(['x','y','z']): for i,d in enumerate(['x','y','z']):
@ -933,5 +932,5 @@ class Geom:
base_nodes = np.argwhere(mask.flatten(order='F')).reshape(-1,1) base_nodes = np.argwhere(mask.flatten(order='F')).reshape(-1,1)
connectivity.append(np.block([base_nodes + o[i][k] for k in range(4)])) connectivity.append(np.block([base_nodes + o[i][k] for k in range(4)]))
coords = grid_filters.node_coord0(self.grid,self.size,self.origin).reshape(-1,3,order='F') coords = grid_filters.coordinates0_node(self.cells,self.size,self.origin).reshape(-1,3,order='F')
return VTK.from_unstructured_grid(coords,np.vstack(connectivity),'QUAD') return VTK.from_unstructured_grid(coords,np.vstack(connectivity),'QUAD')

View File

@ -46,13 +46,17 @@ class Result:
self.version_major = f.attrs['DADF5_version_major'] self.version_major = f.attrs['DADF5_version_major']
self.version_minor = f.attrs['DADF5_version_minor'] self.version_minor = f.attrs['DADF5_version_minor']
if self.version_major != 0 or not 7 <= self.version_minor <= 9: if self.version_major != 0 or not 7 <= self.version_minor <= 10:
raise TypeError(f'Unsupported DADF5 version {self.version_major}.{self.version_minor}') raise TypeError(f'Unsupported DADF5 version {self.version_major}.{self.version_minor}')
self.structured = 'grid' in f['geometry'].attrs.keys() self.structured = 'grid' in f['geometry'].attrs.keys() or \
'cells' in f['geometry'].attrs.keys()
if self.structured: if self.structured:
self.grid = f['geometry'].attrs['grid'] try:
self.cells = f['geometry'].attrs['cells']
except KeyError:
self.cells = f['geometry'].attrs['grid']
self.size = f['geometry'].attrs['size'] self.size = f['geometry'].attrs['size']
self.origin = f['geometry'].attrs['origin'] self.origin = f['geometry'].attrs['origin']
@ -558,19 +562,19 @@ class Result:
return dataset return dataset
@property @property
def cell_coordinates(self): def coordinates0_point(self):
"""Return initial coordinates of the cell centers.""" """Return initial coordinates of the cell centers."""
if self.structured: if self.structured:
return grid_filters.cell_coord0(self.grid,self.size,self.origin).reshape(-1,3,order='F') return grid_filters.coordinates0_point(self.cells,self.size,self.origin).reshape(-1,3,order='F')
else: else:
with h5py.File(self.fname,'r') as f: with h5py.File(self.fname,'r') as f:
return f['geometry/x_c'][()] return f['geometry/x_c'][()]
@property @property
def node_coordinates(self): def coordinates0_node(self):
"""Return initial coordinates of the cell centers.""" """Return initial coordinates of the cell centers."""
if self.structured: if self.structured:
return grid_filters.node_coord0(self.grid,self.size,self.origin).reshape(-1,3,order='F') return grid_filters.coordinates0_node(self.cells,self.size,self.origin).reshape(-1,3,order='F')
else: else:
with h5py.File(self.fname,'r') as f: with h5py.File(self.fname,'r') as f:
return f['geometry/x_n'][()] return f['geometry/x_n'][()]
@ -1219,7 +1223,7 @@ class Result:
topology=ET.SubElement(grid, 'Topology') topology=ET.SubElement(grid, 'Topology')
topology.attrib={'TopologyType': '3DCoRectMesh', topology.attrib={'TopologyType': '3DCoRectMesh',
'Dimensions': '{} {} {}'.format(*self.grid+1)} 'Dimensions': '{} {} {}'.format(*self.cells+1)}
geometry=ET.SubElement(grid, 'Geometry') geometry=ET.SubElement(grid, 'Geometry')
geometry.attrib={'GeometryType':'Origin_DxDyDz'} geometry.attrib={'GeometryType':'Origin_DxDyDz'}
@ -1234,7 +1238,7 @@ class Result:
delta.attrib={'Format': 'XML', delta.attrib={'Format': 'XML',
'NumberType': 'Float', 'NumberType': 'Float',
'Dimensions': '3'} 'Dimensions': '3'}
delta.text="{} {} {}".format(*(self.size/self.grid)) delta.text="{} {} {}".format(*(self.size/self.cells))
with h5py.File(self.fname,'r') as f: with h5py.File(self.fname,'r') as f:
@ -1245,7 +1249,7 @@ class Result:
data_items.append(ET.SubElement(attributes[-1], 'DataItem')) data_items.append(ET.SubElement(attributes[-1], 'DataItem'))
data_items[-1].attrib={'Format': 'HDF', data_items[-1].attrib={'Format': 'HDF',
'Precision': '8', 'Precision': '8',
'Dimensions': '{} {} {} 3'.format(*(self.grid+1))} 'Dimensions': '{} {} {} 3'.format(*(self.cells+1))}
data_items[-1].text=f'{os.path.split(self.fname)[1]}:/{inc}/geometry/u_n' data_items[-1].text=f'{os.path.split(self.fname)[1]}:/{inc}/geometry/u_n'
for o,p in zip(['phases','homogenizations'],['out_type_ph','out_type_ho']): for o,p in zip(['phases','homogenizations'],['out_type_ph','out_type_ho']):
@ -1268,7 +1272,7 @@ class Result:
data_items[-1].attrib={'Format': 'HDF', data_items[-1].attrib={'Format': 'HDF',
'NumberType': number_type_map(dtype), 'NumberType': number_type_map(dtype),
'Precision': f'{dtype.itemsize}', 'Precision': f'{dtype.itemsize}',
'Dimensions': '{} {} {} {}'.format(*self.grid,1 if shape == () else 'Dimensions': '{} {} {} {}'.format(*self.cells,1 if shape == () else
np.prod(shape))} np.prod(shape))}
data_items[-1].text=f'{os.path.split(self.fname)[1]}:{name}' data_items[-1].text=f'{os.path.split(self.fname)[1]}:{name}'
@ -1292,7 +1296,7 @@ class Result:
if mode.lower()=='cell': if mode.lower()=='cell':
if self.structured: if self.structured:
v = VTK.from_rectilinear_grid(self.grid,self.size,self.origin) v = VTK.from_rectilinear_grid(self.cells,self.size,self.origin)
else: else:
with h5py.File(self.fname,'r') as f: with h5py.File(self.fname,'r') as f:
v = VTK.from_unstructured_grid(f['/geometry/x_n'][()], v = VTK.from_unstructured_grid(f['/geometry/x_n'][()],
@ -1300,7 +1304,7 @@ class Result:
f['/geometry/T_c'].attrs['VTK_TYPE'] if h5py3 else \ f['/geometry/T_c'].attrs['VTK_TYPE'] if h5py3 else \
f['/geometry/T_c'].attrs['VTK_TYPE'].decode()) f['/geometry/T_c'].attrs['VTK_TYPE'].decode())
elif mode.lower()=='point': elif mode.lower()=='point':
v = VTK.from_poly_data(self.cell_coordinates) v = VTK.from_poly_data(self.coordinates0_point)
N_digits = int(np.floor(np.log10(max(1,int(self.increments[-1][3:])))))+1 N_digits = int(np.floor(np.log10(max(1,int(self.increments[-1][3:])))))+1

View File

@ -763,7 +763,7 @@ class Rotation:
def _dg(eu,deg): def _dg(eu,deg):
"""Return infinitesimal Euler space volume of bin(s).""" """Return infinitesimal Euler space volume of bin(s)."""
phi_sorted = eu[np.lexsort((eu[:,0],eu[:,1],eu[:,2]))] phi_sorted = eu[np.lexsort((eu[:,0],eu[:,1],eu[:,2]))]
steps,size,_ = grid_filters.cell_coord0_gridSizeOrigin(phi_sorted) steps,size,_ = grid_filters.cellSizeOrigin_coordinates0_point(phi_sorted)
delta = np.radians(size/steps) if deg else size/steps delta = np.radians(size/steps) if deg else size/steps
return delta[0]*2.0*np.sin(delta[1]/2.0)*delta[2] / 8.0 / np.pi**2 * np.sin(np.radians(eu[:,1]) if deg else eu[:,1]) return delta[0]*2.0*np.sin(delta[1]/2.0)*delta[2] / 8.0 / np.pi**2 * np.sin(np.radians(eu[:,1]) if deg else eu[:,1])

View File

@ -73,7 +73,7 @@ class Table:
@staticmethod @staticmethod
def load(fname): def load(fname):
""" """
Load ASCII table file. Load from ASCII table file.
In legacy style, the first line indicates the number of In legacy style, the first line indicates the number of
subsequent header lines as "N header", with the last header line being subsequent header lines as "N header", with the last header line being
@ -131,7 +131,7 @@ class Table:
@staticmethod @staticmethod
def load_ang(fname): def load_ang(fname):
""" """
Load ang file. Load from ang file.
A valid TSL ang file needs to contains the following columns: A valid TSL ang file needs to contains the following columns:
* Euler angles (Bunge notation) in radians, 3 floats, label 'eu'. * Euler angles (Bunge notation) in radians, 3 floats, label 'eu'.

View File

@ -131,7 +131,7 @@ class VTK:
@staticmethod @staticmethod
def load(fname,dataset_type=None): def load(fname,dataset_type=None):
""" """
Create VTK from file. Load from VTK file.
Parameters Parameters
---------- ----------
@ -184,7 +184,7 @@ class VTK:
writer.Write() writer.Write()
def save(self,fname,parallel=True,compress=True): def save(self,fname,parallel=True,compress=True):
""" """
Write to file. Save as VTK file.
Parameters Parameters
---------- ----------

View File

@ -4,38 +4,38 @@ Filters for operations on regular grids.
Notes Notes
----- -----
The grids are defined as (x,y,z,...) where x is fastest and z is slowest. The grids are defined as (x,y,z,...) where x is fastest and z is slowest.
This convention is consistent with the geom file format. This convention is consistent with the layout in grid vtr files.
When converting to/from a plain list (e.g. storage in ASCII table), When converting to/from a plain list (e.g. storage in ASCII table),
the following operations are required for tensorial data: the following operations are required for tensorial data:
D3 = D1.reshape(grid+(-1,),order='F').reshape(grid+(3,3)) D3 = D1.reshape(cells+(-1,),order='F').reshape(cells+(3,3))
D1 = D3.reshape(grid+(-1,)).reshape(-1,9,order='F') D1 = D3.reshape(cells+(-1,)).reshape(-1,9,order='F')
""" """
from scipy import spatial as _spatial from scipy import spatial as _spatial
import numpy as _np import numpy as _np
def _ks(size,grid,first_order=False): def _ks(size,cells,first_order=False):
""" """
Get wave numbers operator. Get wave numbers operator.
Parameters Parameters
---------- ----------
size : numpy.ndarray of shape (3) size : numpy.ndarray of shape (3)
physical size of the periodic field. Physical size of the periodic field.
grid : numpy.ndarray of shape (3) cells : numpy.ndarray of shape (3)
number of grid points. Number of cells.
first_order : bool, optional first_order : bool, optional
correction for first order derivatives, defaults to False. Correction for first order derivatives, defaults to False.
""" """
k_sk = _np.where(_np.arange(grid[0])>grid[0]//2,_np.arange(grid[0])-grid[0],_np.arange(grid[0]))/size[0] k_sk = _np.where(_np.arange(cells[0])>cells[0]//2,_np.arange(cells[0])-cells[0],_np.arange(cells[0]))/size[0]
if grid[0]%2 == 0 and first_order: k_sk[grid[0]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011) if cells[0]%2 == 0 and first_order: k_sk[cells[0]//2] = 0 # Nyquist freq=0 for even cells (Johnson, MIT, 2011)
k_sj = _np.where(_np.arange(grid[1])>grid[1]//2,_np.arange(grid[1])-grid[1],_np.arange(grid[1]))/size[1] k_sj = _np.where(_np.arange(cells[1])>cells[1]//2,_np.arange(cells[1])-cells[1],_np.arange(cells[1]))/size[1]
if grid[1]%2 == 0 and first_order: k_sj[grid[1]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011) if cells[1]%2 == 0 and first_order: k_sj[cells[1]//2] = 0 # Nyquist freq=0 for even cells (Johnson, MIT, 2011)
k_si = _np.arange(grid[2]//2+1)/size[2] k_si = _np.arange(cells[2]//2+1)/size[2]
return _np.stack(_np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij'), axis=-1) return _np.stack(_np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij'), axis=-1)
@ -47,9 +47,9 @@ def curl(size,field):
Parameters Parameters
---------- ----------
size : numpy.ndarray of shape (3) size : numpy.ndarray of shape (3)
physical size of the periodic field. Physical size of the periodic field.
field : numpy.ndarray of shape (:,:,:,3) or (:,:,:,3,3) field : numpy.ndarray of shape (:,:,:,3) or (:,:,:,3,3)
periodic field of which the curl is calculated. Periodic field of which the curl is calculated.
""" """
n = _np.prod(field.shape[3:]) n = _np.prod(field.shape[3:])
@ -73,9 +73,9 @@ def divergence(size,field):
Parameters Parameters
---------- ----------
size : numpy.ndarray of shape (3) size : numpy.ndarray of shape (3)
physical size of the periodic field. Physical size of the periodic field.
field : numpy.ndarray of shape (:,:,:,3) or (:,:,:,3,3) field : numpy.ndarray of shape (:,:,:,3) or (:,:,:,3,3)
periodic field of which the divergence is calculated. Periodic field of which the divergence is calculated.
""" """
n = _np.prod(field.shape[3:]) n = _np.prod(field.shape[3:])
@ -95,9 +95,9 @@ def gradient(size,field):
Parameters Parameters
---------- ----------
size : numpy.ndarray of shape (3) size : numpy.ndarray of shape (3)
physical size of the periodic field. Physical size of the periodic field.
field : numpy.ndarray of shape (:,:,:,1) or (:,:,:,3) field : numpy.ndarray of shape (:,:,:,1) or (:,:,:,3)
periodic field of which the gradient is calculated. Periodic field of which the gradient is calculated.
""" """
n = _np.prod(field.shape[3:]) n = _np.prod(field.shape[3:])
@ -110,39 +110,39 @@ def gradient(size,field):
return _np.fft.irfftn(grad_,axes=(0,1,2),s=field.shape[:3]) return _np.fft.irfftn(grad_,axes=(0,1,2),s=field.shape[:3])
def cell_coord0(grid,size,origin=_np.zeros(3)): def coordinates0_point(cells,size,origin=_np.zeros(3)):
""" """
Cell center positions (undeformed). Cell center positions (undeformed).
Parameters Parameters
---------- ----------
grid : numpy.ndarray of shape (3) cells : numpy.ndarray of shape (3)
number of grid points. Number of cells.
size : numpy.ndarray of shape (3) size : numpy.ndarray of shape (3)
physical size of the periodic field. Physical size of the periodic field.
origin : numpy.ndarray, optional origin : numpy.ndarray, optional
physical origin of the periodic field. Defaults to [0.0,0.0,0.0]. Physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
""" """
start = origin + size/grid*.5 start = origin + size/cells*.5
end = origin + size - size/grid*.5 end = origin + size - size/cells*.5
return _np.stack(_np.meshgrid(_np.linspace(start[0],end[0],grid[0]), return _np.stack(_np.meshgrid(_np.linspace(start[0],end[0],cells[0]),
_np.linspace(start[1],end[1],grid[1]), _np.linspace(start[1],end[1],cells[1]),
_np.linspace(start[2],end[2],grid[2]),indexing = 'ij'), _np.linspace(start[2],end[2],cells[2]),indexing = 'ij'),
axis = -1) axis = -1)
def cell_displacement_fluct(size,F): def displacement_fluct_point(size,F):
""" """
Cell center displacement field from fluctuation part of the deformation gradient field. Cell center displacement field from fluctuation part of the deformation gradient field.
Parameters Parameters
---------- ----------
size : numpy.ndarray of shape (3) size : numpy.ndarray of shape (3)
physical size of the periodic field. Physical size of the periodic field.
F : numpy.ndarray F : numpy.ndarray
deformation gradient field. Deformation gradient field.
""" """
integrator = 0.5j*size/_np.pi integrator = 0.5j*size/_np.pi
@ -160,194 +160,195 @@ def cell_displacement_fluct(size,F):
return _np.fft.irfftn(displacement,axes=(0,1,2),s=F.shape[:3]) return _np.fft.irfftn(displacement,axes=(0,1,2),s=F.shape[:3])
def cell_displacement_avg(size,F): def displacement_avg_point(size,F):
""" """
Cell center displacement field from average part of the deformation gradient field. Cell center displacement field from average part of the deformation gradient field.
Parameters Parameters
---------- ----------
size : numpy.ndarray of shape (3) size : numpy.ndarray of shape (3)
physical size of the periodic field. Physical size of the periodic field.
F : numpy.ndarray F : numpy.ndarray
deformation gradient field. Deformation gradient field.
""" """
F_avg = _np.average(F,axis=(0,1,2)) F_avg = _np.average(F,axis=(0,1,2))
return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),cell_coord0(F.shape[:3],size)) return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),coordinates0_point(F.shape[:3],size))
def cell_displacement(size,F): def displacement_point(size,F):
""" """
Cell center displacement field from deformation gradient field. Cell center displacement field from deformation gradient field.
Parameters Parameters
---------- ----------
size : numpy.ndarray of shape (3) size : numpy.ndarray of shape (3)
physical size of the periodic field. Physical size of the periodic field.
F : numpy.ndarray F : numpy.ndarray
deformation gradient field. Deformation gradient field.
""" """
return cell_displacement_avg(size,F) + cell_displacement_fluct(size,F) return displacement_avg_point(size,F) + displacement_fluct_point(size,F)
def cell_coord(size,F,origin=_np.zeros(3)): def coordinates_point(size,F,origin=_np.zeros(3)):
""" """
Cell center positions. Cell center positions.
Parameters Parameters
---------- ----------
size : numpy.ndarray of shape (3) size : numpy.ndarray of shape (3)
physical size of the periodic field. Physical size of the periodic field.
F : numpy.ndarray F : numpy.ndarray
deformation gradient field. Deformation gradient field.
origin : numpy.ndarray of shape (3), optional origin : numpy.ndarray of shape (3), optional
physical origin of the periodic field. Defaults to [0.0,0.0,0.0]. Physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
""" """
return cell_coord0(F.shape[:3],size,origin) + cell_displacement(size,F) return coordinates0_point(F.shape[:3],size,origin) + displacement_point(size,F)
def cell_coord0_gridSizeOrigin(coord0,ordered=True): def cellSizeOrigin_coordinates0_point(coordinates0,ordered=True):
""" """
Return grid 'DNA', i.e. grid, size, and origin from 1D array of cell positions. Return grid 'DNA', i.e. cells, size, and origin from 1D array of point positions.
Parameters Parameters
---------- ----------
coord0 : numpy.ndarray of shape (:,3) coordinates0 : numpy.ndarray of shape (:,3)
undeformed cell coordinates. Undeformed cell coordinates.
ordered : bool, optional ordered : bool, optional
expect coord0 data to be ordered (x fast, z slow). Expect coordinates0 data to be ordered (x fast, z slow).
""" """
coords = [_np.unique(coord0[:,i]) for i in range(3)] coords = [_np.unique(coordinates0[:,i]) for i in range(3)]
mincorner = _np.array(list(map(min,coords))) mincorner = _np.array(list(map(min,coords)))
maxcorner = _np.array(list(map(max,coords))) maxcorner = _np.array(list(map(max,coords)))
grid = _np.array(list(map(len,coords)),'i') cells = _np.array(list(map(len,coords)),'i')
size = grid/_np.maximum(grid-1,1) * (maxcorner-mincorner) size = cells/_np.maximum(cells-1,1) * (maxcorner-mincorner)
delta = size/grid delta = size/cells
origin = mincorner - delta*.5 origin = mincorner - delta*.5
# 1D/2D: size/origin combination undefined, set origin to 0.0 # 1D/2D: size/origin combination undefined, set origin to 0.0
size [_np.where(grid==1)] = origin[_np.where(grid==1)]*2. size [_np.where(cells==1)] = origin[_np.where(cells==1)]*2.
origin[_np.where(grid==1)] = 0.0 origin[_np.where(cells==1)] = 0.0
if grid.prod() != len(coord0): if cells.prod() != len(coordinates0):
raise ValueError('Data count {len(coord0)} does not match grid {grid}.') raise ValueError('Data count {len(coordinates0)} does not match cells {cells}.')
start = origin + delta*.5 start = origin + delta*.5
end = origin - delta*.5 + size end = origin - delta*.5 + size
atol = _np.max(size)*5e-2 atol = _np.max(size)*5e-2
if not (_np.allclose(coords[0],_np.linspace(start[0],end[0],grid[0]),atol=atol) and \ if not (_np.allclose(coords[0],_np.linspace(start[0],end[0],cells[0]),atol=atol) and \
_np.allclose(coords[1],_np.linspace(start[1],end[1],grid[1]),atol=atol) and \ _np.allclose(coords[1],_np.linspace(start[1],end[1],cells[1]),atol=atol) and \
_np.allclose(coords[2],_np.linspace(start[2],end[2],grid[2]),atol=atol)): _np.allclose(coords[2],_np.linspace(start[2],end[2],cells[2]),atol=atol)):
raise ValueError('Regular grid spacing violated.') raise ValueError('Regular cells spacing violated.')
if ordered and not _np.allclose(coord0.reshape(tuple(grid)+(3,),order='F'),cell_coord0(grid,size,origin),atol=atol): if ordered and not _np.allclose(coordinates0.reshape(tuple(cells)+(3,),order='F'),
coordinates0_point(cells,size,origin),atol=atol):
raise ValueError('Input data is not ordered (x fast, z slow).') raise ValueError('Input data is not ordered (x fast, z slow).')
return (grid,size,origin) return (cells,size,origin)
def coord0_check(coord0): def coordinates0_check(coordinates0):
""" """
Check whether coordinates lie on a regular grid. Check whether coordinates lie on a regular grid.
Parameters Parameters
---------- ----------
coord0 : numpy.ndarray coordinates0 : numpy.ndarray
array of undeformed cell coordinates. Array of undeformed cell coordinates.
""" """
cell_coord0_gridSizeOrigin(coord0,ordered=True) cellSizeOrigin_coordinates0_point(coordinates0,ordered=True)
def node_coord0(grid,size,origin=_np.zeros(3)): def coordinates0_node(cells,size,origin=_np.zeros(3)):
""" """
Nodal positions (undeformed). Nodal positions (undeformed).
Parameters Parameters
---------- ----------
grid : numpy.ndarray of shape (3) cells : numpy.ndarray of shape (3)
number of grid points. Number of cells.
size : numpy.ndarray of shape (3) size : numpy.ndarray of shape (3)
physical size of the periodic field. Physical size of the periodic field.
origin : numpy.ndarray of shape (3), optional origin : numpy.ndarray of shape (3), optional
physical origin of the periodic field. Defaults to [0.0,0.0,0.0]. Physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
""" """
return _np.stack(_np.meshgrid(_np.linspace(origin[0],size[0]+origin[0],grid[0]+1), return _np.stack(_np.meshgrid(_np.linspace(origin[0],size[0]+origin[0],cells[0]+1),
_np.linspace(origin[1],size[1]+origin[1],grid[1]+1), _np.linspace(origin[1],size[1]+origin[1],cells[1]+1),
_np.linspace(origin[2],size[2]+origin[2],grid[2]+1),indexing = 'ij'), _np.linspace(origin[2],size[2]+origin[2],cells[2]+1),indexing = 'ij'),
axis = -1) axis = -1)
def node_displacement_fluct(size,F): def displacement_fluct_node(size,F):
""" """
Nodal displacement field from fluctuation part of the deformation gradient field. Nodal displacement field from fluctuation part of the deformation gradient field.
Parameters Parameters
---------- ----------
size : numpy.ndarray of shape (3) size : numpy.ndarray of shape (3)
physical size of the periodic field. Physical size of the periodic field.
F : numpy.ndarray F : numpy.ndarray
deformation gradient field. Deformation gradient field.
""" """
return cell_2_node(cell_displacement_fluct(size,F)) return point_2_node(displacement_fluct_point(size,F))
def node_displacement_avg(size,F): def displacement_avg_node(size,F):
""" """
Nodal displacement field from average part of the deformation gradient field. Nodal displacement field from average part of the deformation gradient field.
Parameters Parameters
---------- ----------
size : numpy.ndarray of shape (3) size : numpy.ndarray of shape (3)
physical size of the periodic field. Physical size of the periodic field.
F : numpy.ndarray F : numpy.ndarray
deformation gradient field. Deformation gradient field.
""" """
F_avg = _np.average(F,axis=(0,1,2)) F_avg = _np.average(F,axis=(0,1,2))
return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),node_coord0(F.shape[:3],size)) return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),coordinates0_node(F.shape[:3],size))
def node_displacement(size,F): def displacement_node(size,F):
""" """
Nodal displacement field from deformation gradient field. Nodal displacement field from deformation gradient field.
Parameters Parameters
---------- ----------
size : numpy.ndarray of shape (3) size : numpy.ndarray of shape (3)
physical size of the periodic field. Physical size of the periodic field.
F : numpy.ndarray F : numpy.ndarray
deformation gradient field. Deformation gradient field.
""" """
return node_displacement_avg(size,F) + node_displacement_fluct(size,F) return displacement_avg_node(size,F) + displacement_fluct_node(size,F)
def node_coord(size,F,origin=_np.zeros(3)): def coordinates_node(size,F,origin=_np.zeros(3)):
""" """
Nodal positions. Nodal positions.
Parameters Parameters
---------- ----------
size : numpy.ndarray of shape (3) size : numpy.ndarray of shape (3)
physical size of the periodic field. Physical size of the periodic field.
F : numpy.ndarray F : numpy.ndarray
deformation gradient field. Deformation gradient field.
origin : numpy.ndarray of shape (3), optional origin : numpy.ndarray of shape (3), optional
physical origin of the periodic field. Defaults to [0.0,0.0,0.0]. Physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
""" """
return node_coord0(F.shape[:3],size,origin) + node_displacement(size,F) return coordinates0_node(F.shape[:3],size,origin) + displacement_node(size,F)
def cell_2_node(cell_data): def point_2_node(cell_data):
"""Interpolate periodic cell data to nodal data.""" """Interpolate periodic point data to nodal data."""
n = ( cell_data + _np.roll(cell_data,1,(0,1,2)) n = ( cell_data + _np.roll(cell_data,1,(0,1,2))
+ _np.roll(cell_data,1,(0,)) + _np.roll(cell_data,1,(1,)) + _np.roll(cell_data,1,(2,)) + _np.roll(cell_data,1,(0,)) + _np.roll(cell_data,1,(1,)) + _np.roll(cell_data,1,(2,))
+ _np.roll(cell_data,1,(0,1)) + _np.roll(cell_data,1,(1,2)) + _np.roll(cell_data,1,(2,0)))*0.125 + _np.roll(cell_data,1,(0,1)) + _np.roll(cell_data,1,(1,2)) + _np.roll(cell_data,1,(2,0)))*0.125
@ -355,8 +356,8 @@ def cell_2_node(cell_data):
return _np.pad(n,((0,1),(0,1),(0,1))+((0,0),)*len(cell_data.shape[3:]),mode='wrap') return _np.pad(n,((0,1),(0,1),(0,1))+((0,0),)*len(cell_data.shape[3:]),mode='wrap')
def node_2_cell(node_data): def node_2_point(node_data):
"""Interpolate periodic nodal data to cell data.""" """Interpolate periodic nodal data to point data."""
c = ( node_data + _np.roll(node_data,1,(0,1,2)) c = ( node_data + _np.roll(node_data,1,(0,1,2))
+ _np.roll(node_data,1,(0,)) + _np.roll(node_data,1,(1,)) + _np.roll(node_data,1,(2,)) + _np.roll(node_data,1,(0,)) + _np.roll(node_data,1,(1,)) + _np.roll(node_data,1,(2,))
+ _np.roll(node_data,1,(0,1)) + _np.roll(node_data,1,(1,2)) + _np.roll(node_data,1,(2,0)))*0.125 + _np.roll(node_data,1,(0,1)) + _np.roll(node_data,1,(1,2)) + _np.roll(node_data,1,(2,0)))*0.125
@ -364,57 +365,58 @@ def node_2_cell(node_data):
return c[1:,1:,1:] return c[1:,1:,1:]
def node_coord0_gridSizeOrigin(coord0,ordered=True): def cellSizeOrigin_coordinates0_node(coordinates0,ordered=True):
""" """
Return grid 'DNA', i.e. grid, size, and origin from 1D array of nodal positions. Return grid 'DNA', i.e. cells, size, and origin from 1D array of nodal positions.
Parameters Parameters
---------- ----------
coord0 : numpy.ndarray of shape (:,3) coordinates0 : numpy.ndarray of shape (:,3)
undeformed nodal coordinates. Undeformed nodal coordinates.
ordered : bool, optional ordered : bool, optional
expect coord0 data to be ordered (x fast, z slow). Expect coordinates0 data to be ordered (x fast, z slow).
""" """
coords = [_np.unique(coord0[:,i]) for i in range(3)] coords = [_np.unique(coordinates0[:,i]) for i in range(3)]
mincorner = _np.array(list(map(min,coords))) mincorner = _np.array(list(map(min,coords)))
maxcorner = _np.array(list(map(max,coords))) maxcorner = _np.array(list(map(max,coords)))
grid = _np.array(list(map(len,coords)),'i') - 1 cells = _np.array(list(map(len,coords)),'i') - 1
size = maxcorner-mincorner size = maxcorner-mincorner
origin = mincorner origin = mincorner
if (grid+1).prod() != len(coord0): if (cells+1).prod() != len(coordinates0):
raise ValueError('Data count {len(coord0)} does not match grid {grid}.') raise ValueError('Data count {len(coordinates0)} does not match cells {cells}.')
atol = _np.max(size)*5e-2 atol = _np.max(size)*5e-2
if not (_np.allclose(coords[0],_np.linspace(mincorner[0],maxcorner[0],grid[0]+1),atol=atol) and \ if not (_np.allclose(coords[0],_np.linspace(mincorner[0],maxcorner[0],cells[0]+1),atol=atol) and \
_np.allclose(coords[1],_np.linspace(mincorner[1],maxcorner[1],grid[1]+1),atol=atol) and \ _np.allclose(coords[1],_np.linspace(mincorner[1],maxcorner[1],cells[1]+1),atol=atol) and \
_np.allclose(coords[2],_np.linspace(mincorner[2],maxcorner[2],grid[2]+1),atol=atol)): _np.allclose(coords[2],_np.linspace(mincorner[2],maxcorner[2],cells[2]+1),atol=atol)):
raise ValueError('Regular grid spacing violated.') raise ValueError('Regular cells spacing violated.')
if ordered and not _np.allclose(coord0.reshape(tuple(grid+1)+(3,),order='F'),node_coord0(grid,size,origin),atol=atol): if ordered and not _np.allclose(coordinates0.reshape(tuple(cells+1)+(3,),order='F'),
coordinates0_node(cells,size,origin),atol=atol):
raise ValueError('Input data is not ordered (x fast, z slow).') raise ValueError('Input data is not ordered (x fast, z slow).')
return (grid,size,origin) return (cells,size,origin)
def regrid(size,F,new_grid): def regrid(size,F,cells_new):
""" """
Return mapping from coordinates in deformed configuration to a regular grid. Return mapping from coordinates in deformed configuration to a regular cells.
Parameters Parameters
---------- ----------
size : numpy.ndarray of shape (3) size : numpy.ndarray of shape (3)
physical size Physical size.
F : numpy.ndarray of shape (:,:,:,3,3) F : numpy.ndarray of shape (:,:,:,3,3)
deformation gradient field Deformation gradient field.
new_grid : numpy.ndarray of shape (3) cells_new : numpy.ndarray of shape (3)
new grid for undeformed coordinates New cells for undeformed coordinates.
""" """
c = cell_coord0(F.shape[:3],size) \ c = coordinates0_point(F.shape[:3],size) \
+ cell_displacement_avg(size,F) \ + displacement_avg_point(size,F) \
+ cell_displacement_fluct(size,F) + displacement_fluct_point(size,F)
outer = _np.dot(_np.average(F,axis=(0,1,2)),size) outer = _np.dot(_np.average(F,axis=(0,1,2)),size)
for d in range(3): for d in range(3):
@ -422,4 +424,4 @@ def regrid(size,F,new_grid):
c[_np.where(c[:,:,:,d]>outer[d])] -= outer[d] c[_np.where(c[:,:,:,d]>outer[d])] -= outer[d]
tree = _spatial.cKDTree(c.reshape(-1,3),boxsize=outer) tree = _spatial.cKDTree(c.reshape(-1,3),boxsize=outer)
return tree.query(cell_coord0(new_grid,outer))[1].flatten() return tree.query(coordinates0_point(cells_new,outer))[1].flatten()

View File

@ -7,7 +7,7 @@ from . import util
from . import grid_filters from . import grid_filters
def from_random(size,N_seeds,grid=None,rng_seed=None): def from_random(size,N_seeds,cells=None,rng_seed=None):
""" """
Random seeding in space. Random seeding in space.
@ -17,7 +17,7 @@ def from_random(size,N_seeds,grid=None,rng_seed=None):
Physical size of the seeding domain. Physical size of the seeding domain.
N_seeds : int N_seeds : int
Number of seeds. Number of seeds.
grid : numpy.ndarray of shape (3), optional. cells : numpy.ndarray of shape (3), optional.
If given, ensures that all seeds initiate one grain if using a If given, ensures that all seeds initiate one grain if using a
standard Voronoi tessellation. standard Voronoi tessellation.
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
@ -26,12 +26,12 @@ def from_random(size,N_seeds,grid=None,rng_seed=None):
""" """
rng = _np.random.default_rng(rng_seed) rng = _np.random.default_rng(rng_seed)
if grid is None: if cells is None:
coords = rng.random((N_seeds,3)) * size coords = rng.random((N_seeds,3)) * size
else: else:
grid_coords = grid_filters.cell_coord0(grid,size).reshape(-1,3,order='F') grid_coords = grid_filters.coordinates0_point(cells,size).reshape(-1,3,order='F')
coords = grid_coords[rng.choice(_np.prod(grid),N_seeds, replace=False)] \ coords = grid_coords[rng.choice(_np.prod(cells),N_seeds, replace=False)] \
+ _np.broadcast_to(size/grid,(N_seeds,3))*(rng.random((N_seeds,3))*.5-.25) # wobble without leaving grid + _np.broadcast_to(size/cells,(N_seeds,3))*(rng.random((N_seeds,3))*.5-.25) # wobble without leaving cells
return coords return coords
@ -51,7 +51,7 @@ def from_Poisson_disc(size,N_seeds,N_candidates,distance,periodic=True,rng_seed=
distance : float distance : float
Minimum acceptable distance to other seeds. Minimum acceptable distance to other seeds.
periodic : boolean, optional periodic : boolean, optional
Calculate minimum distance for periodically repeated grid. Calculate minimum distance for periodically repeated cells.
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
A seed to initialize the BitGenerator. Defaults to None. A seed to initialize the BitGenerator. Defaults to None.
If None, then fresh, unpredictable entropy will be pulled from the OS. If None, then fresh, unpredictable entropy will be pulled from the OS.
@ -77,14 +77,14 @@ def from_Poisson_disc(size,N_seeds,N_candidates,distance,periodic=True,rng_seed=
return coords return coords
def from_geom(geom,selection=None,invert=False,average=False,periodic=True): def from_grid(grid,selection=None,invert=False,average=False,periodic=True):
""" """
Create seed from existing geometry description. Create seed from existing grid description.
Parameters Parameters
---------- ----------
geom : damask.Geom grid : damask.Grid
Geometry, from which the material IDs are used as seeds. Grid, from which the material IDs are used as seeds.
selection : iterable of integers, optional selection : iterable of integers, optional
Material IDs to consider. Material IDs to consider.
invert : boolean, false invert : boolean, false
@ -95,10 +95,10 @@ def from_geom(geom,selection=None,invert=False,average=False,periodic=True):
Center of gravity with periodic boundaries. Center of gravity with periodic boundaries.
""" """
material = geom.material.reshape((-1,1),order='F') material = grid.material.reshape((-1,1),order='F')
mask = _np.full(geom.grid.prod(),True,dtype=bool) if selection is None else \ mask = _np.full(grid.cells.prod(),True,dtype=bool) if selection is None else \
_np.isin(material,selection,invert=invert).flatten() _np.isin(material,selection,invert=invert).flatten()
coords = grid_filters.cell_coord0(geom.grid,geom.size).reshape(-1,3,order='F') coords = grid_filters.coordinates0_point(grid.cells,grid.size).reshape(-1,3,order='F')
if not average: if not average:
return (coords[mask],material[mask]) return (coords[mask],material[mask])
@ -106,8 +106,8 @@ def from_geom(geom,selection=None,invert=False,average=False,periodic=True):
materials = _np.unique(material[mask]) materials = _np.unique(material[mask])
coords_ = _np.zeros((materials.size,3),dtype=float) coords_ = _np.zeros((materials.size,3),dtype=float)
for i,mat in enumerate(materials): for i,mat in enumerate(materials):
pc = (2*_np.pi*coords[material[:,0]==mat,:]-geom.origin)/geom.size pc = (2*_np.pi*coords[material[:,0]==mat,:]-grid.origin)/grid.size
coords_[i] = geom.origin + geom.size / 2 / _np.pi * (_np.pi + coords_[i] = grid.origin + grid.size / 2 / _np.pi * (_np.pi +
_np.arctan2(-_np.average(_np.sin(pc),axis=0), _np.arctan2(-_np.average(_np.sin(pc),axis=0),
-_np.average(_np.cos(pc),axis=0))) \ -_np.average(_np.cos(pc),axis=0))) \
if periodic else \ if periodic else \

View File

@ -2,7 +2,7 @@ import pytest
import numpy as np import numpy as np
from damask import VTK from damask import VTK
from damask import Geom from damask import Grid
from damask import Table from damask import Table
from damask import Rotation from damask import Rotation
from damask import util from damask import util
@ -10,9 +10,9 @@ from damask import seeds
from damask import grid_filters from damask import grid_filters
def geom_equal(a,b): def grid_equal(a,b):
return np.all(a.material == b.material) and \ return np.all(a.material == b.material) and \
np.all(a.grid == b.grid) and \ np.all(a.cells == b.cells) and \
np.allclose(a.size, b.size) and \ np.allclose(a.size, b.size) and \
str(a.diff(b)) == str(b.diff(a)) str(a.diff(b)) == str(b.diff(a))
@ -23,15 +23,15 @@ def default():
np.arange(2,42), np.arange(2,42),
np.ones(40,dtype=int)*2, np.ones(40,dtype=int)*2,
np.arange(1,41))).reshape(8,5,4,order='F') np.arange(1,41))).reshape(8,5,4,order='F')
return Geom(x,[8e-6,5e-6,4e-6]) return Grid(x,[8e-6,5e-6,4e-6])
@pytest.fixture @pytest.fixture
def ref_path(ref_path_base): def ref_path(ref_path_base):
"""Directory containing reference results.""" """Directory containing reference results."""
return ref_path_base/'Geom' return ref_path_base/'Grid'
class TestGeom: class TestGrid:
@pytest.fixture(autouse=True) @pytest.fixture(autouse=True)
def _patch_execution_stamp(self, patch_execution_stamp): def _patch_execution_stamp(self, patch_execution_stamp):
@ -46,7 +46,7 @@ class TestGeom:
def test_diff_not_equal(self,default): def test_diff_not_equal(self,default):
new = Geom(default.material[1:,1:,1:]+1,default.size*.9,np.ones(3)-default.origin,comments=['modified']) new = Grid(default.material[1:,1:,1:]+1,default.size*.9,np.ones(3)-default.origin,comments=['modified'])
assert str(default.diff(new)) != '' assert str(default.diff(new)) != ''
def test_repr(self,default): def test_repr(self,default):
@ -54,36 +54,36 @@ class TestGeom:
def test_read_write_vtr(self,default,tmp_path): def test_read_write_vtr(self,default,tmp_path):
default.save(tmp_path/'default') default.save(tmp_path/'default')
new = Geom.load(tmp_path/'default.vtr') new = Grid.load(tmp_path/'default.vtr')
assert geom_equal(new,default) assert grid_equal(new,default)
def test_invalid_vtr(self,tmp_path): def test_invalid_vtr(self,tmp_path):
v = VTK.from_rectilinear_grid(np.random.randint(5,10,3)*2,np.random.random(3) + 1.0) v = VTK.from_rectilinear_grid(np.random.randint(5,10,3)*2,np.random.random(3) + 1.0)
v.save(tmp_path/'no_materialpoint.vtr',parallel=False) v.save(tmp_path/'no_materialpoint.vtr',parallel=False)
with pytest.raises(ValueError): with pytest.raises(ValueError):
Geom.load(tmp_path/'no_materialpoint.vtr') Grid.load(tmp_path/'no_materialpoint.vtr')
def test_invalid_material(self): def test_invalid_material(self):
with pytest.raises(TypeError): with pytest.raises(TypeError):
Geom(np.zeros((3,3,3),dtype='complex'),np.ones(3)) Grid(np.zeros((3,3,3),dtype='complex'),np.ones(3))
def test_cast_to_int(self): def test_cast_to_int(self):
g = Geom(np.zeros((3,3,3)),np.ones(3)) g = Grid(np.zeros((3,3,3)),np.ones(3))
assert g.material.dtype in np.sctypes['int'] assert g.material.dtype in np.sctypes['int']
def test_invalid_size(self,default): def test_invalid_size(self,default):
with pytest.raises(ValueError): with pytest.raises(ValueError):
Geom(default.material[1:,1:,1:], Grid(default.material[1:,1:,1:],
size=np.ones(2)) size=np.ones(2))
def test_save_load_ASCII(self,default,tmp_path): def test_save_load_ASCII(self,default,tmp_path):
default.save_ASCII(tmp_path/'ASCII') default.save_ASCII(tmp_path/'ASCII')
default.material -= 1 default.material -= 1
assert geom_equal(Geom.load_ASCII(tmp_path/'ASCII'),default) assert grid_equal(Grid.load_ASCII(tmp_path/'ASCII'),default)
def test_invalid_origin(self,default): def test_invalid_origin(self,default):
with pytest.raises(ValueError): with pytest.raises(ValueError):
Geom(default.material[1:,1:,1:], Grid(default.material[1:,1:,1:],
size=np.ones(3), size=np.ones(3),
origin=np.ones(4)) origin=np.ones(4))
@ -91,14 +91,14 @@ class TestGeom:
def test_invalid_materials_shape(self,default): def test_invalid_materials_shape(self,default):
material = np.ones((3,3)) material = np.ones((3,3))
with pytest.raises(ValueError): with pytest.raises(ValueError):
Geom(material, Grid(material,
size=np.ones(3)) size=np.ones(3))
def test_invalid_materials_type(self,default): def test_invalid_materials_type(self,default):
material = np.random.randint(1,300,(3,4,5))==1 material = np.random.randint(1,300,(3,4,5))==1
with pytest.raises(TypeError): with pytest.raises(TypeError):
Geom(material) Grid(material)
@pytest.mark.parametrize('directions,reflect',[ @pytest.mark.parametrize('directions,reflect',[
@ -113,7 +113,7 @@ class TestGeom:
tag = f'directions_{"-".join(directions)}+reflect_{reflect}' tag = f'directions_{"-".join(directions)}+reflect_{reflect}'
reference = ref_path/f'mirror_{tag}.vtr' reference = ref_path/f'mirror_{tag}.vtr'
if update: modified.save(reference) if update: modified.save(reference)
assert geom_equal(Geom.load(reference), assert grid_equal(Grid.load(reference),
modified) modified)
@ -135,17 +135,17 @@ class TestGeom:
tag = f'directions_{"-".join(directions)}' tag = f'directions_{"-".join(directions)}'
reference = ref_path/f'flip_{tag}.vtr' reference = ref_path/f'flip_{tag}.vtr'
if update: modified.save(reference) if update: modified.save(reference)
assert geom_equal(Geom.load(reference), assert grid_equal(Grid.load(reference),
modified) modified)
def test_flip_invariant(self,default): def test_flip_invariant(self,default):
assert geom_equal(default,default.flip([])) assert grid_equal(default,default.flip([]))
@pytest.mark.parametrize('direction',[['x'],['x','y']]) @pytest.mark.parametrize('direction',[['x'],['x','y']])
def test_flip_double(self,default,direction): def test_flip_double(self,default,direction):
assert geom_equal(default,default.flip(direction).flip(direction)) assert grid_equal(default,default.flip(direction).flip(direction))
@pytest.mark.parametrize('directions',[(1,2,'y'),('a','b','x'),[1]]) @pytest.mark.parametrize('directions',[(1,2,'y'),('a','b','x'),[1]])
@ -162,12 +162,12 @@ class TestGeom:
reference = ref_path/f'clean_{stencil}_{"+".join(map(str,[None] if selection is None else selection))}_{periodic}' reference = ref_path/f'clean_{stencil}_{"+".join(map(str,[None] if selection is None else selection))}_{periodic}'
if update and stencil > 1: if update and stencil > 1:
current.save(reference) current.save(reference)
assert geom_equal(Geom.load(reference) if stencil > 1 else default, assert grid_equal(Grid.load(reference) if stencil > 1 else default,
current current
) )
@pytest.mark.parametrize('grid',[ @pytest.mark.parametrize('cells',[
(10,11,10), (10,11,10),
[10,13,10], [10,13,10],
np.array((10,10,10)), np.array((10,10,10)),
@ -176,12 +176,12 @@ class TestGeom:
np.array((10,20,2)) np.array((10,20,2))
] ]
) )
def test_scale(self,default,update,ref_path,grid): def test_scale(self,default,update,ref_path,cells):
modified = default.scale(grid) modified = default.scale(cells)
tag = f'grid_{util.srepr(grid,"-")}' tag = f'grid_{util.srepr(cells,"-")}'
reference = ref_path/f'scale_{tag}.vtr' reference = ref_path/f'scale_{tag}.vtr'
if update: modified.save(reference) if update: modified.save(reference)
assert geom_equal(Geom.load(reference), assert grid_equal(Grid.load(reference),
modified) modified)
@ -190,21 +190,21 @@ class TestGeom:
for m in np.unique(material): for m in np.unique(material):
material[material==m] = material.max() + np.random.randint(1,30) material[material==m] = material.max() + np.random.randint(1,30)
default.material -= 1 default.material -= 1
modified = Geom(material, modified = Grid(material,
default.size, default.size,
default.origin) default.origin)
assert not geom_equal(modified,default) assert not grid_equal(modified,default)
assert geom_equal(default, assert grid_equal(default,
modified.renumber()) modified.renumber())
def test_substitute(self,default): def test_substitute(self,default):
offset = np.random.randint(1,500) offset = np.random.randint(1,500)
modified = Geom(default.material + offset, modified = Grid(default.material + offset,
default.size, default.size,
default.origin) default.origin)
assert not geom_equal(modified,default) assert not grid_equal(modified,default)
assert geom_equal(default, assert grid_equal(default,
modified.substitute(np.arange(default.material.max())+1+offset, modified.substitute(np.arange(default.material.max())+1+offset,
np.arange(default.material.max())+1)) np.arange(default.material.max())+1))
@ -212,12 +212,12 @@ class TestGeom:
f = np.unique(default.material.flatten())[:np.random.randint(1,default.material.max())] f = np.unique(default.material.flatten())[:np.random.randint(1,default.material.max())]
t = np.random.permutation(f) t = np.random.permutation(f)
modified = default.substitute(f,t) modified = default.substitute(f,t)
assert np.array_equiv(t,f) or (not geom_equal(modified,default)) assert np.array_equiv(t,f) or (not grid_equal(modified,default))
assert geom_equal(default, modified.substitute(t,f)) assert grid_equal(default, modified.substitute(t,f))
def test_sort(self): def test_sort(self):
grid = np.random.randint(5,20,3) cells = np.random.randint(5,20,3)
m = Geom(np.random.randint(1,20,grid)*3,np.ones(3)).sort().material.flatten(order='F') m = Grid(np.random.randint(1,20,cells)*3,np.ones(3)).sort().material.flatten(order='F')
for i,v in enumerate(m): for i,v in enumerate(m):
assert i==0 or v > m[:i].max() or v in m[:i] assert i==0 or v > m[:i].max() or v in m[:i]
@ -227,7 +227,7 @@ class TestGeom:
modified = default.copy() modified = default.copy()
for i in range(np.rint(360/axis_angle[3]).astype(int)): for i in range(np.rint(360/axis_angle[3]).astype(int)):
modified.rotate(Rotation.from_axis_angle(axis_angle,degrees=True)) modified.rotate(Rotation.from_axis_angle(axis_angle,degrees=True))
assert geom_equal(default,modified) assert grid_equal(default,modified)
@pytest.mark.parametrize('Eulers',[[32.0,68.0,21.0], @pytest.mark.parametrize('Eulers',[[32.0,68.0,21.0],
@ -237,15 +237,15 @@ class TestGeom:
tag = f'Eulers_{util.srepr(Eulers,"-")}' tag = f'Eulers_{util.srepr(Eulers,"-")}'
reference = ref_path/f'rotate_{tag}.vtr' reference = ref_path/f'rotate_{tag}.vtr'
if update: modified.save(reference) if update: modified.save(reference)
assert geom_equal(Geom.load(reference), assert grid_equal(Grid.load(reference),
modified) modified)
def test_canvas(self,default): def test_canvas(self,default):
grid = default.grid cells = default.cells
grid_add = np.random.randint(0,30,(3)) grid_add = np.random.randint(0,30,(3))
modified = default.canvas(grid + grid_add) modified = default.canvas(cells + grid_add)
assert np.all(modified.material[:grid[0],:grid[1],:grid[2]] == default.material) assert np.all(modified.material[:cells[0],:cells[1],:cells[2]] == default.material)
@pytest.mark.parametrize('center1,center2',[(np.random.random(3)*.5,np.random.random()*8), @pytest.mark.parametrize('center1,center2',[(np.random.random(3)*.5,np.random.random()*8),
@ -263,8 +263,8 @@ class TestGeom:
o = np.random.random(3)-.5 o = np.random.random(3)-.5
g = np.random.randint(8,32,(3)) g = np.random.randint(8,32,(3))
s = np.random.random(3)+.5 s = np.random.random(3)+.5
G_1 = Geom(np.ones(g,'i'),s,o).add_primitive(diameter,center1,exponent) G_1 = Grid(np.ones(g,'i'),s,o).add_primitive(diameter,center1,exponent)
G_2 = Geom(np.ones(g,'i'),s,o).add_primitive(diameter,center2,exponent) G_2 = Grid(np.ones(g,'i'),s,o).add_primitive(diameter,center2,exponent)
assert np.count_nonzero(G_1.material!=2) == np.count_nonzero(G_2.material!=2) assert np.count_nonzero(G_1.material!=2) == np.count_nonzero(G_2.material!=2)
@ -279,9 +279,9 @@ class TestGeom:
g = np.random.randint(8,32,(3)) g = np.random.randint(8,32,(3))
s = np.random.random(3)+.5 s = np.random.random(3)+.5
fill = np.random.randint(10)+2 fill = np.random.randint(10)+2
G_1 = Geom(np.ones(g,'i'),s).add_primitive(.3,center,1,fill,inverse=inverse,periodic=periodic) G_1 = Grid(np.ones(g,'i'),s).add_primitive(.3,center,1,fill,inverse=inverse,periodic=periodic)
G_2 = Geom(np.ones(g,'i'),s).add_primitive(.3,center,1,fill,Rotation.from_random(),inverse,periodic=periodic) G_2 = Grid(np.ones(g,'i'),s).add_primitive(.3,center,1,fill,Rotation.from_random(),inverse,periodic=periodic)
assert geom_equal(G_1,G_2) assert grid_equal(G_1,G_2)
@pytest.mark.parametrize('trigger',[[1],[]]) @pytest.mark.parametrize('trigger',[[1],[]])
@ -300,9 +300,9 @@ class TestGeom:
if len(trigger) > 0: if len(trigger) > 0:
m2[m==1] = 1 m2[m==1] = 1
geom = Geom(m,np.random.rand(3)).vicinity_offset(vicinity,offset,trigger=trigger) grid = Grid(m,np.random.rand(3)).vicinity_offset(vicinity,offset,trigger=trigger)
assert np.all(m2==geom.material) assert np.all(m2==grid.material)
@pytest.mark.parametrize('periodic',[True,False]) @pytest.mark.parametrize('periodic',[True,False])
@ -314,39 +314,39 @@ class TestGeom:
@pytest.mark.parametrize('periodic',[True,False]) @pytest.mark.parametrize('periodic',[True,False])
def test_tessellation_approaches(self,periodic): def test_tessellation_approaches(self,periodic):
grid = np.random.randint(10,20,3) cells = np.random.randint(10,20,3)
size = np.random.random(3) + 1.0 size = np.random.random(3) + 1.0
N_seeds= np.random.randint(10,30) N_seeds= np.random.randint(10,30)
seeds = np.random.rand(N_seeds,3) * np.broadcast_to(size,(N_seeds,3)) seeds = np.random.rand(N_seeds,3) * np.broadcast_to(size,(N_seeds,3))
Voronoi = Geom.from_Voronoi_tessellation( grid,size,seeds, np.arange(N_seeds)+5,periodic) Voronoi = Grid.from_Voronoi_tessellation( cells,size,seeds, np.arange(N_seeds)+5,periodic)
Laguerre = Geom.from_Laguerre_tessellation(grid,size,seeds,np.ones(N_seeds),np.arange(N_seeds)+5,periodic) Laguerre = Grid.from_Laguerre_tessellation(cells,size,seeds,np.ones(N_seeds),np.arange(N_seeds)+5,periodic)
assert geom_equal(Laguerre,Voronoi) assert grid_equal(Laguerre,Voronoi)
def test_Laguerre_weights(self): def test_Laguerre_weights(self):
grid = np.random.randint(10,20,3) cells = np.random.randint(10,20,3)
size = np.random.random(3) + 1.0 size = np.random.random(3) + 1.0
N_seeds= np.random.randint(10,30) N_seeds= np.random.randint(10,30)
seeds = np.random.rand(N_seeds,3) * np.broadcast_to(size,(N_seeds,3)) seeds = np.random.rand(N_seeds,3) * np.broadcast_to(size,(N_seeds,3))
weights= np.full((N_seeds),-np.inf) weights= np.full((N_seeds),-np.inf)
ms = np.random.randint(N_seeds) ms = np.random.randint(N_seeds)
weights[ms] = np.random.random() weights[ms] = np.random.random()
Laguerre = Geom.from_Laguerre_tessellation(grid,size,seeds,weights,periodic=np.random.random()>0.5) Laguerre = Grid.from_Laguerre_tessellation(cells,size,seeds,weights,periodic=np.random.random()>0.5)
assert np.all(Laguerre.material == ms) assert np.all(Laguerre.material == ms)
@pytest.mark.parametrize('approach',['Laguerre','Voronoi']) @pytest.mark.parametrize('approach',['Laguerre','Voronoi'])
def test_tessellate_bicrystal(self,approach): def test_tessellate_bicrystal(self,approach):
grid = np.random.randint(5,10,3)*2 cells = np.random.randint(5,10,3)*2
size = grid.astype(np.float) size = cells.astype(np.float)
seeds = np.vstack((size*np.array([0.5,0.25,0.5]),size*np.array([0.5,0.75,0.5]))) seeds = np.vstack((size*np.array([0.5,0.25,0.5]),size*np.array([0.5,0.75,0.5])))
material = np.zeros(grid) material = np.zeros(cells)
material[:,grid[1]//2:,:] = 1 material[:,cells[1]//2:,:] = 1
if approach == 'Laguerre': if approach == 'Laguerre':
geom = Geom.from_Laguerre_tessellation(grid,size,seeds,np.ones(2),periodic=np.random.random()>0.5) grid = Grid.from_Laguerre_tessellation(cells,size,seeds,np.ones(2),periodic=np.random.random()>0.5)
elif approach == 'Voronoi': elif approach == 'Voronoi':
geom = Geom.from_Voronoi_tessellation(grid,size,seeds, periodic=np.random.random()>0.5) grid = Grid.from_Voronoi_tessellation(cells,size,seeds, periodic=np.random.random()>0.5)
assert np.all(geom.material == material) assert np.all(grid.material == material)
@pytest.mark.parametrize('surface',['Schwarz P', @pytest.mark.parametrize('surface',['Schwarz P',
@ -363,14 +363,14 @@ class TestGeom:
'Fisher-Koch S', 'Fisher-Koch S',
]) ])
def test_minimal_surface_basic_properties(self,surface): def test_minimal_surface_basic_properties(self,surface):
grid = np.random.randint(60,100,3) cells = np.random.randint(60,100,3)
size = np.ones(3)+np.random.rand(3) size = np.ones(3)+np.random.rand(3)
threshold = 2*np.random.rand()-1. threshold = 2*np.random.rand()-1.
periods = np.random.randint(2)+1 periods = np.random.randint(2)+1
materials = np.random.randint(0,40,2) materials = np.random.randint(0,40,2)
geom = Geom.from_minimal_surface(grid,size,surface,threshold,periods,materials) grid = Grid.from_minimal_surface(cells,size,surface,threshold,periods,materials)
assert set(geom.material.flatten()) | set(materials) == set(materials) \ assert set(grid.material.flatten()) | set(materials) == set(materials) \
and (geom.size == size).all() and (geom.grid == grid).all() and (grid.size == size).all() and (grid.cells == cells).all()
@pytest.mark.parametrize('surface,threshold',[('Schwarz P',0), @pytest.mark.parametrize('surface,threshold',[('Schwarz P',0),
('Double Primitive',-1./6.), ('Double Primitive',-1./6.),
@ -386,36 +386,36 @@ class TestGeom:
('Fisher-Koch S',0), ('Fisher-Koch S',0),
]) ])
def test_minimal_surface_volume(self,surface,threshold): def test_minimal_surface_volume(self,surface,threshold):
grid = np.ones(3,dtype=int)*64 cells = np.ones(3,dtype=int)*64
geom = Geom.from_minimal_surface(grid,np.ones(3),surface,threshold) grid = Grid.from_minimal_surface(cells,np.ones(3),surface,threshold)
assert np.isclose(np.count_nonzero(geom.material==1)/np.prod(geom.grid),.5,rtol=1e-3) assert np.isclose(np.count_nonzero(grid.material==1)/np.prod(grid.cells),.5,rtol=1e-3)
def test_from_table(self): def test_from_table(self):
grid = np.random.randint(60,100,3) cells = np.random.randint(60,100,3)
size = np.ones(3)+np.random.rand(3) size = np.ones(3)+np.random.rand(3)
coords = grid_filters.cell_coord0(grid,size).reshape(-1,3,order='F') coords = grid_filters.coordinates0_point(cells,size).reshape(-1,3,order='F')
z=np.ones(grid.prod()) z=np.ones(cells.prod())
z[grid[:2].prod()*int(grid[2]/2):]=0 z[cells[:2].prod()*int(cells[2]/2):]=0
t = Table(np.column_stack((coords,z)),{'coords':3,'z':1}) t = Table(np.column_stack((coords,z)),{'coords':3,'z':1})
g = Geom.from_table(t,'coords',['1_coords','z']) g = Grid.from_table(t,'coords',['1_coords','z'])
assert g.N_materials == g.grid[0]*2 and (g.material[:,:,-1]-g.material[:,:,0] == grid[0]).all() assert g.N_materials == g.cells[0]*2 and (g.material[:,:,-1]-g.material[:,:,0] == cells[0]).all()
def test_from_table_recover(self,tmp_path): def test_from_table_recover(self,tmp_path):
grid = np.random.randint(60,100,3) cells = np.random.randint(60,100,3)
size = np.ones(3)+np.random.rand(3) size = np.ones(3)+np.random.rand(3)
s = seeds.from_random(size,np.random.randint(60,100)) s = seeds.from_random(size,np.random.randint(60,100))
geom = Geom.from_Voronoi_tessellation(grid,size,s) grid = Grid.from_Voronoi_tessellation(cells,size,s)
coords = grid_filters.cell_coord0(grid,size) coords = grid_filters.coordinates0_point(cells,size)
t = Table(np.column_stack((coords.reshape(-1,3,order='F'),geom.material.flatten(order='F'))),{'c':3,'m':1}) t = Table(np.column_stack((coords.reshape(-1,3,order='F'),grid.material.flatten(order='F'))),{'c':3,'m':1})
assert geom_equal(geom.sort().renumber(),Geom.from_table(t,'c',['m'])) assert grid_equal(grid.sort().renumber(),Grid.from_table(t,'c',['m']))
@pytest.mark.parametrize('periodic',[True,False]) @pytest.mark.parametrize('periodic',[True,False])
@pytest.mark.parametrize('direction',['x','y','z',['x','y'],'zy','xz',['x','y','z']]) @pytest.mark.parametrize('direction',['x','y','z',['x','y'],'zy','xz',['x','y','z']])
def test_get_grain_boundaries(self,update,ref_path,periodic,direction): def test_get_grain_boundaries(self,update,ref_path,periodic,direction):
geom=Geom.load(ref_path/'get_grain_boundaries_8g12x15x20.vtr') grid=Grid.load(ref_path/'get_grain_boundaries_8g12x15x20.vtr')
current=geom.get_grain_boundaries(periodic,direction) current=grid.get_grain_boundaries(periodic,direction)
if update: if update:
current.save(ref_path/f'get_grain_boundaries_8g12x15x20_{direction}_{periodic}.vtu',parallel=False) current.save(ref_path/f'get_grain_boundaries_8g12x15x20_{direction}_{periodic}.vtu',parallel=False)
reference=VTK.load(ref_path/f'get_grain_boundaries_8g12x15x20_{"".join(direction)}_{periodic}.vtu') reference=VTK.load(ref_path/f'get_grain_boundaries_8g12x15x20_{"".join(direction)}_{periodic}.vtu')

View File

@ -356,11 +356,11 @@ class TestResult:
@pytest.mark.parametrize('mode',['cell','node']) @pytest.mark.parametrize('mode',['cell','node'])
def test_coordinates(self,default,mode): def test_coordinates(self,default,mode):
if mode == 'cell': if mode == 'cell':
a = grid_filters.cell_coord0(default.grid,default.size,default.origin) a = grid_filters.coordinates0_point(default.cells,default.size,default.origin)
b = default.cell_coordinates.reshape(tuple(default.grid)+(3,),order='F') b = default.coordinates0_point.reshape(tuple(default.cells)+(3,),order='F')
elif mode == 'node': elif mode == 'node':
a = grid_filters.node_coord0(default.grid,default.size,default.origin) a = grid_filters.coordinates0_node(default.cells,default.size,default.origin)
b = default.node_coordinates.reshape(tuple(default.grid+1)+(3,),order='F') b = default.coordinates0_node.reshape(tuple(default.cells+1)+(3,),order='F')
assert np.allclose(a,b) assert np.allclose(a,b)
@pytest.mark.parametrize('output',['F',[],['F','P']]) @pytest.mark.parametrize('output',['F',[],['F','P']])

View File

@ -1022,7 +1022,7 @@ class TestRotation:
rng = tuple(zip(np.zeros(3),limits)) rng = tuple(zip(np.zeros(3),limits))
weights = Table.load(ref_path/'ODF_experimental_cell.txt').get('intensity').flatten() weights = Table.load(ref_path/'ODF_experimental_cell.txt').get('intensity').flatten()
Eulers = grid_filters.cell_coord0(steps,limits) Eulers = grid_filters.coordinates0_point(steps,limits)
Eulers = np.radians(Eulers) if not degrees else Eulers Eulers = np.radians(Eulers) if not degrees else Eulers
Eulers_r = Rotation.from_ODF(weights,Eulers.reshape(-1,3,order='F'),N,degrees,fractions).as_Euler_angles(True) Eulers_r = Rotation.from_ODF(weights,Eulers.reshape(-1,3,order='F'),N,degrees,fractions).as_Euler_angles(True)
@ -1040,7 +1040,7 @@ class TestRotation:
weights = Table.load(ref_path/'ODF_experimental.txt').get('intensity') weights = Table.load(ref_path/'ODF_experimental.txt').get('intensity')
weights = weights.reshape(steps+1,order='F')[:-1,:-1,:-1].reshape(-1,order='F') weights = weights.reshape(steps+1,order='F')[:-1,:-1,:-1].reshape(-1,order='F')
Eulers = grid_filters.node_coord0(steps,limits)[:-1,:-1,:-1] Eulers = grid_filters.coordinates0_node(steps,limits)[:-1,:-1,:-1]
Eulers = np.radians(Eulers) if not degrees else Eulers Eulers = np.radians(Eulers) if not degrees else Eulers
Eulers_r = Rotation.from_ODF(weights,Eulers.reshape(-1,3,order='F'),N,degrees).as_Euler_angles(True) Eulers_r = Rotation.from_ODF(weights,Eulers.reshape(-1,3,order='F'),N,degrees).as_Euler_angles(True)

View File

@ -16,9 +16,9 @@ def ref_path(ref_path_base):
@pytest.fixture @pytest.fixture
def default(): def default():
"""Simple VTK.""" """Simple VTK."""
grid = np.array([5,6,7],int) cells = np.array([5,6,7],int)
size = np.array([.6,1.,.5]) size = np.array([.6,1.,.5])
return VTK.from_rectilinear_grid(grid,size) return VTK.from_rectilinear_grid(cells,size)
class TestVTK: class TestVTK:
@ -27,10 +27,10 @@ class TestVTK:
print('patched damask.util.execution_stamp') print('patched damask.util.execution_stamp')
def test_rectilinearGrid(self,tmp_path): def test_rectilinearGrid(self,tmp_path):
grid = np.random.randint(5,10,3)*2 cells = np.random.randint(5,10,3)*2
size = np.random.random(3) + 1.0 size = np.random.random(3) + 1.0
origin = np.random.random(3) origin = np.random.random(3)
v = VTK.from_rectilinear_grid(grid,size,origin) v = VTK.from_rectilinear_grid(cells,size,origin)
string = v.__repr__() string = v.__repr__()
v.save(tmp_path/'rectilinearGrid',False) v.save(tmp_path/'rectilinearGrid',False)
vtr = VTK.load(tmp_path/'rectilinearGrid.vtr') vtr = VTK.load(tmp_path/'rectilinearGrid.vtr')
@ -152,11 +152,11 @@ class TestVTK:
np.allclose(polyData.get('coordinates'),points) np.allclose(polyData.get('coordinates'),points)
def test_compare_reference_rectilinearGrid(self,update,ref_path,tmp_path): def test_compare_reference_rectilinearGrid(self,update,ref_path,tmp_path):
grid = np.array([5,6,7],int) cells = np.array([5,6,7],int)
size = np.array([.6,1.,.5]) size = np.array([.6,1.,.5])
rectilinearGrid = VTK.from_rectilinear_grid(grid,size) rectilinearGrid = VTK.from_rectilinear_grid(cells,size)
c = grid_filters.cell_coord0(grid,size).reshape(-1,3,order='F') c = grid_filters.coordinates0_point(cells,size).reshape(-1,3,order='F')
n = grid_filters.node_coord0(grid,size).reshape(-1,3,order='F') n = grid_filters.coordinates0_node(cells,size).reshape(-1,3,order='F')
rectilinearGrid.add(c,'cell') rectilinearGrid.add(c,'cell')
rectilinearGrid.add(n,'node') rectilinearGrid.add(n,'node')
if update: if update:

View File

@ -5,124 +5,124 @@ from damask import grid_filters
class TestGridFilters: class TestGridFilters:
def test_cell_coord0(self): def test_coordinates0_point(self):
size = np.random.random(3) size = np.random.random(3)
grid = np.random.randint(8,32,(3)) cells = np.random.randint(8,32,(3))
coord = grid_filters.cell_coord0(grid,size) coord = grid_filters.coordinates0_point(cells,size)
assert np.allclose(coord[0,0,0],size/grid*.5) and coord.shape == tuple(grid) + (3,) assert np.allclose(coord[0,0,0],size/cells*.5) and coord.shape == tuple(cells) + (3,)
def test_node_coord0(self): def test_coordinates0_node(self):
size = np.random.random(3) size = np.random.random(3)
grid = np.random.randint(8,32,(3)) cells = np.random.randint(8,32,(3))
coord = grid_filters.node_coord0(grid,size) coord = grid_filters.coordinates0_node(cells,size)
assert np.allclose(coord[-1,-1,-1],size) and coord.shape == tuple(grid+1) + (3,) assert np.allclose(coord[-1,-1,-1],size) and coord.shape == tuple(cells+1) + (3,)
def test_coord0(self): def test_coord0(self):
size = np.random.random(3) size = np.random.random(3)
grid = np.random.randint(8,32,(3)) cells = np.random.randint(8,32,(3))
c = grid_filters.cell_coord0(grid+1,size+size/grid) c = grid_filters.coordinates0_point(cells+1,size+size/cells)
n = grid_filters.node_coord0(grid,size) + size/grid*.5 n = grid_filters.coordinates0_node(cells,size) + size/cells*.5
assert np.allclose(c,n) assert np.allclose(c,n)
@pytest.mark.parametrize('mode',['cell','node']) @pytest.mark.parametrize('mode',['point','node'])
def test_grid_DNA(self,mode): def test_grid_DNA(self,mode):
"""Ensure that xx_coord0_gridSizeOrigin is the inverse of xx_coord0.""" """Ensure that cellSizeOrigin_coordinates0_xx is the inverse of coordinates0_xx."""
grid = np.random.randint(8,32,(3)) cells = np.random.randint(8,32,(3))
size = np.random.random(3) size = np.random.random(3)
origin = np.random.random(3) origin = np.random.random(3)
coord0 = eval(f'grid_filters.{mode}_coord0(grid,size,origin)') # noqa coord0 = eval(f'grid_filters.coordinates0_{mode}(cells,size,origin)') # noqa
_grid,_size,_origin = eval(f'grid_filters.{mode}_coord0_gridSizeOrigin(coord0.reshape(-1,3,order="F"))') _cells,_size,_origin = eval(f'grid_filters.cellSizeOrigin_coordinates0_{mode}(coord0.reshape(-1,3,order="F"))')
assert np.allclose(grid,_grid) and np.allclose(size,_size) and np.allclose(origin,_origin) assert np.allclose(cells,_cells) and np.allclose(size,_size) and np.allclose(origin,_origin)
def test_displacement_fluct_equivalence(self): def test_displacement_fluct_equivalence(self):
"""Ensure that fluctuations are periodic.""" """Ensure that fluctuations are periodic."""
size = np.random.random(3) size = np.random.random(3)
grid = np.random.randint(8,32,(3)) cells = np.random.randint(8,32,(3))
F = np.random.random(tuple(grid)+(3,3)) F = np.random.random(tuple(cells)+(3,3))
assert np.allclose(grid_filters.node_displacement_fluct(size,F), assert np.allclose(grid_filters.displacement_fluct_node(size,F),
grid_filters.cell_2_node(grid_filters.cell_displacement_fluct(size,F))) grid_filters.point_2_node(grid_filters.displacement_fluct_point(size,F)))
def test_interpolation_to_node(self): def test_interpolation_to_node(self):
size = np.random.random(3) size = np.random.random(3)
grid = np.random.randint(8,32,(3)) cells = np.random.randint(8,32,(3))
F = np.random.random(tuple(grid)+(3,3)) F = np.random.random(tuple(cells)+(3,3))
assert np.allclose(grid_filters.node_coord(size,F) [1:-1,1:-1,1:-1], assert np.allclose(grid_filters.coordinates_node(size,F) [1:-1,1:-1,1:-1],
grid_filters.cell_2_node(grid_filters.cell_coord(size,F))[1:-1,1:-1,1:-1]) grid_filters.point_2_node(grid_filters.coordinates_point(size,F))[1:-1,1:-1,1:-1])
def test_interpolation_to_cell(self): def test_interpolation_to_cell(self):
grid = np.random.randint(1,30,(3)) cells = np.random.randint(1,30,(3))
node_coord_x = np.linspace(0,np.pi*2,num=grid[0]+1) coordinates_node_x = np.linspace(0,np.pi*2,num=cells[0]+1)
node_field_x = np.cos(node_coord_x) node_field_x = np.cos(coordinates_node_x)
node_field = np.broadcast_to(node_field_x.reshape(-1,1,1),grid+1) node_field = np.broadcast_to(node_field_x.reshape(-1,1,1),cells+1)
cell_coord_x = node_coord_x[:-1]+node_coord_x[1]*.5 coordinates0_point_x = coordinates_node_x[:-1]+coordinates_node_x[1]*.5
cell_field_x = np.interp(cell_coord_x,node_coord_x,node_field_x,period=np.pi*2.) cell_field_x = np.interp(coordinates0_point_x,coordinates_node_x,node_field_x,period=np.pi*2.)
cell_field = np.broadcast_to(cell_field_x.reshape(-1,1,1),grid) cell_field = np.broadcast_to(cell_field_x.reshape(-1,1,1),cells)
assert np.allclose(cell_field,grid_filters.node_2_cell(node_field)) assert np.allclose(cell_field,grid_filters.node_2_point(node_field))
@pytest.mark.parametrize('mode',['cell','node']) @pytest.mark.parametrize('mode',['point','node'])
def test_coord0_origin(self,mode): def test_coordinates0_origin(self,mode):
origin= np.random.random(3) origin= np.random.random(3)
size = np.random.random(3) # noqa size = np.random.random(3) # noqa
grid = np.random.randint(8,32,(3)) cells = np.random.randint(8,32,(3))
shifted = eval(f'grid_filters.{mode}_coord0(grid,size,origin)') shifted = eval(f'grid_filters.coordinates0_{mode}(cells,size,origin)')
unshifted = eval(f'grid_filters.{mode}_coord0(grid,size)') unshifted = eval(f'grid_filters.coordinates0_{mode}(cells,size)')
if mode == 'cell': if mode == 'cell':
assert np.allclose(shifted,unshifted+np.broadcast_to(origin,tuple(grid) +(3,))) assert np.allclose(shifted,unshifted+np.broadcast_to(origin,tuple(cells) +(3,)))
elif mode == 'node': elif mode == 'node':
assert np.allclose(shifted,unshifted+np.broadcast_to(origin,tuple(grid+1)+(3,))) assert np.allclose(shifted,unshifted+np.broadcast_to(origin,tuple(cells+1)+(3,)))
@pytest.mark.parametrize('function',[grid_filters.cell_displacement_avg, @pytest.mark.parametrize('function',[grid_filters.displacement_avg_point,
grid_filters.node_displacement_avg]) grid_filters.displacement_avg_node])
def test_displacement_avg_vanishes(self,function): def test_displacement_avg_vanishes(self,function):
"""Ensure that random fluctuations in F do not result in average displacement.""" """Ensure that random fluctuations in F do not result in average displacement."""
size = np.random.random(3) size = np.random.random(3)
grid = np.random.randint(8,32,(3)) cells = np.random.randint(8,32,(3))
F = np.random.random(tuple(grid)+(3,3)) F = np.random.random(tuple(cells)+(3,3))
F += np.eye(3) - np.average(F,axis=(0,1,2)) F += np.eye(3) - np.average(F,axis=(0,1,2))
assert np.allclose(function(size,F),0.0) assert np.allclose(function(size,F),0.0)
@pytest.mark.parametrize('function',[grid_filters.cell_displacement_fluct, @pytest.mark.parametrize('function',[grid_filters.displacement_fluct_point,
grid_filters.node_displacement_fluct]) grid_filters.displacement_fluct_node])
def test_displacement_fluct_vanishes(self,function): def test_displacement_fluct_vanishes(self,function):
"""Ensure that constant F does not result in fluctuating displacement.""" """Ensure that constant F does not result in fluctuating displacement."""
size = np.random.random(3) size = np.random.random(3)
grid = np.random.randint(8,32,(3)) cells = np.random.randint(8,32,(3))
F = np.broadcast_to(np.random.random((3,3)), tuple(grid)+(3,3)) F = np.broadcast_to(np.random.random((3,3)), tuple(cells)+(3,3))
assert np.allclose(function(size,F),0.0) assert np.allclose(function(size,F),0.0)
@pytest.mark.parametrize('function',[grid_filters.coord0_check, @pytest.mark.parametrize('function',[grid_filters.coordinates0_check,
grid_filters.node_coord0_gridSizeOrigin, grid_filters.cellSizeOrigin_coordinates0_node,
grid_filters.cell_coord0_gridSizeOrigin]) grid_filters.cellSizeOrigin_coordinates0_point])
def test_invalid_coordinates(self,function): def test_invalid_coordinates(self,function):
invalid_coordinates = np.random.random((np.random.randint(12,52),3)) invalid_coordinates = np.random.random((np.random.randint(12,52),3))
with pytest.raises(ValueError): with pytest.raises(ValueError):
function(invalid_coordinates) function(invalid_coordinates)
@pytest.mark.parametrize('function',[grid_filters.node_coord0_gridSizeOrigin, @pytest.mark.parametrize('function',[grid_filters.cellSizeOrigin_coordinates0_node,
grid_filters.cell_coord0_gridSizeOrigin]) grid_filters.cellSizeOrigin_coordinates0_point])
def test_uneven_spaced_coordinates(self,function): def test_uneven_spaced_coordinates(self,function):
start = np.random.random(3) start = np.random.random(3)
end = np.random.random(3)*10. + start end = np.random.random(3)*10. + start
grid = np.random.randint(8,32,(3)) cells = np.random.randint(8,32,(3))
uneven = np.stack(np.meshgrid(np.logspace(start[0],end[0],grid[0]), uneven = np.stack(np.meshgrid(np.logspace(start[0],end[0],cells[0]),
np.logspace(start[1],end[1],grid[1]), np.logspace(start[1],end[1],cells[1]),
np.logspace(start[2],end[2],grid[2]),indexing = 'ij'), np.logspace(start[2],end[2],cells[2]),indexing = 'ij'),
axis = -1).reshape((grid.prod(),3),order='F') axis = -1).reshape((cells.prod(),3),order='F')
with pytest.raises(ValueError): with pytest.raises(ValueError):
function(uneven) function(uneven)
@pytest.mark.parametrize('mode',[True,False]) @pytest.mark.parametrize('mode',[True,False])
@pytest.mark.parametrize('function',[grid_filters.node_coord0_gridSizeOrigin, @pytest.mark.parametrize('function',[grid_filters.cellSizeOrigin_coordinates0_node,
grid_filters.cell_coord0_gridSizeOrigin]) grid_filters.cellSizeOrigin_coordinates0_point])
def test_unordered_coordinates(self,function,mode): def test_unordered_coordinates(self,function,mode):
origin = np.random.random(3) origin = np.random.random(3)
size = np.random.random(3)*10.+origin size = np.random.random(3)*10.+origin
grid = np.random.randint(8,32,(3)) cells = np.random.randint(8,32,(3))
unordered = grid_filters.node_coord0(grid,size,origin).reshape(-1,3) unordered = grid_filters.coordinates0_node(cells,size,origin).reshape(-1,3)
if mode: if mode:
with pytest.raises(ValueError): with pytest.raises(ValueError):
function(unordered,mode) function(unordered,mode)
@ -131,9 +131,9 @@ class TestGridFilters:
def test_regrid(self): def test_regrid(self):
size = np.random.random(3) size = np.random.random(3)
grid = np.random.randint(8,32,(3)) cells = np.random.randint(8,32,(3))
F = np.broadcast_to(np.eye(3), tuple(grid)+(3,3)) F = np.broadcast_to(np.eye(3), tuple(cells)+(3,3))
assert all(grid_filters.regrid(size,F,grid) == np.arange(grid.prod())) assert all(grid_filters.regrid(size,F,cells) == np.arange(cells.prod()))
@pytest.mark.parametrize('differential_operator',[grid_filters.curl, @pytest.mark.parametrize('differential_operator',[grid_filters.curl,
@ -141,14 +141,14 @@ class TestGridFilters:
grid_filters.gradient]) grid_filters.gradient])
def test_differential_operator_constant(self,differential_operator): def test_differential_operator_constant(self,differential_operator):
size = np.random.random(3)+1.0 size = np.random.random(3)+1.0
grid = np.random.randint(8,32,(3)) cells = np.random.randint(8,32,(3))
shapes = { shapes = {
grid_filters.curl: [(3,),(3,3)], grid_filters.curl: [(3,),(3,3)],
grid_filters.divergence:[(3,),(3,3)], grid_filters.divergence:[(3,),(3,3)],
grid_filters.gradient: [(1,),(3,)] grid_filters.gradient: [(1,),(3,)]
} }
for shape in shapes[differential_operator]: for shape in shapes[differential_operator]:
field = np.ones(tuple(grid)+shape)*np.random.random()*1.0e5 field = np.ones(tuple(cells)+shape)*np.random.random()*1.0e5
assert np.allclose(differential_operator(size,field),0.0) assert np.allclose(differential_operator(size,field),0.0)
@ -190,15 +190,15 @@ class TestGridFilters:
@pytest.mark.parametrize('field_def,grad_def',grad_test_data) @pytest.mark.parametrize('field_def,grad_def',grad_test_data)
def test_grad(self,field_def,grad_def): def test_grad(self,field_def,grad_def):
size = np.random.random(3)+1.0 size = np.random.random(3)+1.0
grid = np.random.randint(8,32,(3)) cells = np.random.randint(8,32,(3))
nodes = grid_filters.cell_coord0(grid,size) nodes = grid_filters.coordinates0_point(cells,size)
my_locals = locals() # needed for list comprehension my_locals = locals() # needed for list comprehension
field = np.stack([np.broadcast_to(eval(f,globals(),my_locals),grid) for f in field_def],axis=-1) field = np.stack([np.broadcast_to(eval(f,globals(),my_locals),cells) for f in field_def],axis=-1)
field = field.reshape(tuple(grid) + ((3,) if len(field_def)==3 else (1,))) field = field.reshape(tuple(cells) + ((3,) if len(field_def)==3 else (1,)))
grad = np.stack([np.broadcast_to(eval(c,globals(),my_locals),grid) for c in grad_def], axis=-1) grad = np.stack([np.broadcast_to(eval(c,globals(),my_locals),cells) for c in grad_def], axis=-1)
grad = grad.reshape(tuple(grid) + ((3,3) if len(grad_def)==9 else (3,))) grad = grad.reshape(tuple(cells) + ((3,3) if len(grad_def)==9 else (3,)))
assert np.allclose(grad,grid_filters.gradient(size,field)) assert np.allclose(grad,grid_filters.gradient(size,field))
@ -250,15 +250,15 @@ class TestGridFilters:
@pytest.mark.parametrize('field_def,curl_def',curl_test_data) @pytest.mark.parametrize('field_def,curl_def',curl_test_data)
def test_curl(self,field_def,curl_def): def test_curl(self,field_def,curl_def):
size = np.random.random(3)+1.0 size = np.random.random(3)+1.0
grid = np.random.randint(8,32,(3)) cells = np.random.randint(8,32,(3))
nodes = grid_filters.cell_coord0(grid,size) nodes = grid_filters.coordinates0_point(cells,size)
my_locals = locals() # needed for list comprehension my_locals = locals() # needed for list comprehension
field = np.stack([np.broadcast_to(eval(f,globals(),my_locals),grid) for f in field_def],axis=-1) field = np.stack([np.broadcast_to(eval(f,globals(),my_locals),cells) for f in field_def],axis=-1)
field = field.reshape(tuple(grid) + ((3,3) if len(field_def)==9 else (3,))) field = field.reshape(tuple(cells) + ((3,3) if len(field_def)==9 else (3,)))
curl = np.stack([np.broadcast_to(eval(c,globals(),my_locals),grid) for c in curl_def], axis=-1) curl = np.stack([np.broadcast_to(eval(c,globals(),my_locals),cells) for c in curl_def], axis=-1)
curl = curl.reshape(tuple(grid) + ((3,3) if len(curl_def)==9 else (3,))) curl = curl.reshape(tuple(cells) + ((3,3) if len(curl_def)==9 else (3,)))
assert np.allclose(curl,grid_filters.curl(size,field)) assert np.allclose(curl,grid_filters.curl(size,field))
@ -303,17 +303,17 @@ class TestGridFilters:
def test_div(self,field_def,div_def): def test_div(self,field_def,div_def):
size = np.random.random(3)+1.0 size = np.random.random(3)+1.0
grid = np.random.randint(8,32,(3)) cells = np.random.randint(8,32,(3))
nodes = grid_filters.cell_coord0(grid,size) nodes = grid_filters.coordinates0_point(cells,size)
my_locals = locals() # needed for list comprehension my_locals = locals() # needed for list comprehension
field = np.stack([np.broadcast_to(eval(f,globals(),my_locals),grid) for f in field_def],axis=-1) field = np.stack([np.broadcast_to(eval(f,globals(),my_locals),cells) for f in field_def],axis=-1)
field = field.reshape(tuple(grid) + ((3,3) if len(field_def)==9 else (3,))) field = field.reshape(tuple(cells) + ((3,3) if len(field_def)==9 else (3,)))
div = np.stack([np.broadcast_to(eval(c,globals(),my_locals),grid) for c in div_def], axis=-1) div = np.stack([np.broadcast_to(eval(c,globals(),my_locals),cells) for c in div_def], axis=-1)
if len(div_def)==3: if len(div_def)==3:
div = div.reshape(tuple(grid) + ((3,))) div = div.reshape(tuple(cells) + ((3,)))
else: else:
div=div.reshape(tuple(grid)) div=div.reshape(tuple(cells))
assert np.allclose(div,grid_filters.divergence(size,field)) assert np.allclose(div,grid_filters.divergence(size,field))

View File

@ -4,15 +4,15 @@ from scipy.spatial import cKDTree
from damask import seeds from damask import seeds
from damask import grid_filters from damask import grid_filters
from damask import Geom from damask import Grid
class TestSeeds: class TestSeeds:
@pytest.mark.parametrize('grid',[None,np.ones(3,dtype='i')*10]) @pytest.mark.parametrize('cells',[None,np.ones(3,dtype='i')*10])
def test_from_random(self,grid): def test_from_random(self,cells):
N_seeds = np.random.randint(30,300) N_seeds = np.random.randint(30,300)
size = np.ones(3) + np.random.random(3) size = np.ones(3) + np.random.random(3)
coords = seeds.from_random(size,N_seeds,grid) coords = seeds.from_random(size,N_seeds,cells)
assert (0<=coords).all() and (coords<size).all() assert (0<=coords).all() and (coords<size).all()
@pytest.mark.parametrize('periodic',[True,False]) @pytest.mark.parametrize('periodic',[True,False])
@ -26,37 +26,37 @@ class TestSeeds:
cKDTree(coords).query(coords, 2) cKDTree(coords).query(coords, 2)
assert (0<= coords).all() and (coords<size).all() and np.min(min_dists[:,1])>=distance assert (0<= coords).all() and (coords<size).all() and np.min(min_dists[:,1])>=distance
def test_from_geom_reconstruct(self): def test_from_grid_reconstruct(self):
grid = np.random.randint(10,20,3) cells = np.random.randint(10,20,3)
N_seeds = np.random.randint(30,300) N_seeds = np.random.randint(30,300)
size = np.ones(3) + np.random.random(3) size = np.ones(3) + np.random.random(3)
coords = seeds.from_random(size,N_seeds,grid) coords = seeds.from_random(size,N_seeds,cells)
geom_1 = Geom.from_Voronoi_tessellation(grid,size,coords) grid_1 = Grid.from_Voronoi_tessellation(cells,size,coords)
coords,material = seeds.from_geom(geom_1) coords,material = seeds.from_grid(grid_1)
geom_2 = Geom.from_Voronoi_tessellation(grid,size,coords,material) grid_2 = Grid.from_Voronoi_tessellation(cells,size,coords,material)
assert (geom_2.material==geom_1.material).all() assert (grid_2.material==grid_1.material).all()
@pytest.mark.parametrize('periodic',[True,False]) @pytest.mark.parametrize('periodic',[True,False])
@pytest.mark.parametrize('average',[True,False]) @pytest.mark.parametrize('average',[True,False])
def test_from_geom_grid(self,periodic,average): def test_from_grid_grid(self,periodic,average):
grid = np.random.randint(10,20,3) cells = np.random.randint(10,20,3)
size = np.ones(3) + np.random.random(3) size = np.ones(3) + np.random.random(3)
coords = grid_filters.cell_coord0(grid,size).reshape(-1,3) coords = grid_filters.coordinates0_point(cells,size).reshape(-1,3)
np.random.shuffle(coords) np.random.shuffle(coords)
geom_1 = Geom.from_Voronoi_tessellation(grid,size,coords) grid_1 = Grid.from_Voronoi_tessellation(cells,size,coords)
coords,material = seeds.from_geom(geom_1,average=average,periodic=periodic) coords,material = seeds.from_grid(grid_1,average=average,periodic=periodic)
geom_2 = Geom.from_Voronoi_tessellation(grid,size,coords,material) grid_2 = Grid.from_Voronoi_tessellation(cells,size,coords,material)
assert (geom_2.material==geom_1.material).all() assert (grid_2.material==grid_1.material).all()
@pytest.mark.parametrize('periodic',[True,False]) @pytest.mark.parametrize('periodic',[True,False])
@pytest.mark.parametrize('average',[True,False]) @pytest.mark.parametrize('average',[True,False])
@pytest.mark.parametrize('invert',[True,False]) @pytest.mark.parametrize('invert',[True,False])
def test_from_geom_selection(self,periodic,average,invert): def test_from_grid_selection(self,periodic,average,invert):
grid = np.random.randint(10,20,3) cells = np.random.randint(10,20,3)
N_seeds = np.random.randint(30,300) N_seeds = np.random.randint(30,300)
size = np.ones(3) + np.random.random(3) size = np.ones(3) + np.random.random(3)
coords = seeds.from_random(size,N_seeds,grid) coords = seeds.from_random(size,N_seeds,cells)
geom = Geom.from_Voronoi_tessellation(grid,size,coords) grid = Grid.from_Voronoi_tessellation(cells,size,coords)
selection=np.random.randint(N_seeds)+1 selection=np.random.randint(N_seeds)+1
coords,material = seeds.from_geom(geom,average=average,periodic=periodic,invert=invert,selection=[selection]) coords,material = seeds.from_grid(grid,average=average,periodic=periodic,invert=invert,selection=[selection])
assert selection not in material if invert else (selection==material).all() assert selection not in material if invert else (selection==material).all()

View File

@ -86,7 +86,7 @@ subroutine discretization_results
u = discretization_IPcoords & u = discretization_IPcoords &
- discretization_IPcoords0 - discretization_IPcoords0
call results_writeDataset('current/geometry',u,'u_p','displacements of the materialpoints','m') call results_writeDataset('current/geometry',u,'u_p','displacements of the materialpoints (cell centers)','m')
end subroutine discretization_results end subroutine discretization_results

View File

@ -79,7 +79,7 @@ subroutine discretization_grid_init(restart)
call MPI_Bcast(origin,3,MPI_DOUBLE,0,PETSC_COMM_WORLD, ierr) call MPI_Bcast(origin,3,MPI_DOUBLE,0,PETSC_COMM_WORLD, ierr)
if (ierr /= 0) error stop 'MPI error' if (ierr /= 0) error stop 'MPI error'
print'(/,a,3(i12 ))', ' grid a b c: ', grid print'(/,a,3(i12 ))', ' cells a b c: ', grid
print'(a,3(es12.5))', ' size x y z: ', geomSize print'(a,3(es12.5))', ' size x y z: ', geomSize
print'(a,3(es12.5))', ' origin x y z: ', origin print'(a,3(es12.5))', ' origin x y z: ', origin
@ -125,9 +125,9 @@ subroutine discretization_grid_init(restart)
if(.not. restart) then if(.not. restart) then
call results_openJobFile call results_openJobFile
call results_closeGroup(results_addGroup('geometry')) call results_closeGroup(results_addGroup('geometry'))
call results_addAttribute('grid', grid, 'geometry') call results_addAttribute('cells', grid, '/geometry')
call results_addAttribute('size', geomSize,'geometry') call results_addAttribute('size', geomSize,'/geometry')
call results_addAttribute('origin',origin, 'geometry') call results_addAttribute('origin',origin, '/geometry')
call results_closeJobFile call results_closeJobFile
endif endif

View File

@ -162,7 +162,7 @@ subroutine writeGeometry(elem, &
coordinates_temp = coordinates_points coordinates_temp = coordinates_points
call results_writeDataset('geometry',coordinates_temp,'x_p', & call results_writeDataset('geometry',coordinates_temp,'x_p', &
'initial coordinates of the materialpoints','m') 'initial coordinates of the materialpoints (cell centers)','m')
call results_closeJobFile call results_closeJobFile

View File

@ -74,7 +74,7 @@ subroutine results_init(restart)
if(.not. restart) then if(.not. restart) then
resultsFile = HDF5_openFile(trim(getSolverJobName())//'.hdf5','w',.true.) resultsFile = HDF5_openFile(trim(getSolverJobName())//'.hdf5','w',.true.)
call results_addAttribute('DADF5_version_major',0) call results_addAttribute('DADF5_version_major',0)
call results_addAttribute('DADF5_version_minor',9) call results_addAttribute('DADF5_version_minor',10)
call results_addAttribute('DAMASK_version',DAMASKVERSION) call results_addAttribute('DAMASK_version',DAMASKVERSION)
call get_command(commandLine) call get_command(commandLine)
call results_addAttribute('Call',trim(commandLine)) call results_addAttribute('Call',trim(commandLine))