leaner (and hopefully faster) code
This commit is contained in:
parent
31788301e9
commit
ecb8510217
|
@ -3,7 +3,6 @@ import math
|
|||
import numpy as np
|
||||
|
||||
from . import Lambert
|
||||
from .quaternion import Quaternion
|
||||
from .quaternion import P
|
||||
|
||||
|
||||
|
@ -49,10 +48,7 @@ class Rotation:
|
|||
Unit quaternion that follows the conventions. Use .fromQuaternion to perform a sanity check.
|
||||
|
||||
"""
|
||||
if isinstance(quaternion,Quaternion):
|
||||
self.quaternion = quaternion.copy()
|
||||
else:
|
||||
self.quaternion = Quaternion(q=quaternion[0],p=quaternion[1:4])
|
||||
|
||||
def __copy__(self):
|
||||
"""Copy."""
|
||||
|
@ -64,7 +60,7 @@ class Rotation:
|
|||
def __repr__(self):
|
||||
"""Orientation displayed as unit quaternion, rotation matrix, and Bunge-Euler angles."""
|
||||
return '\n'.join([
|
||||
'{}'.format(self.quaternion),
|
||||
'Quaternion: (real={q:+.6f}, imag=<{p[0]:+.6f}, {p[1]:+.6f}, {p[2]:+.6f}>)'.format(*(self.quaternion)),
|
||||
'Matrix:\n{}'.format( '\n'.join(['\t'.join(list(map(str,self.asMatrix()[i,:]))) for i in range(3)]) ),
|
||||
'Bunge Eulers / deg: {}'.format('\t'.join(list(map(str,self.asEulers(degrees=True)))) ),
|
||||
])
|
||||
|
@ -85,14 +81,20 @@ class Rotation:
|
|||
|
||||
"""
|
||||
if isinstance(other, Rotation): # rotate a rotation
|
||||
return self.__class__(self.quaternion * other.quaternion).standardize()
|
||||
self_q = self.quaternion[0]
|
||||
self_p = self.quaternion[1:]
|
||||
other_q = other.quaternion[0]
|
||||
other_p = other.quaternion[1:]
|
||||
r = np.append(self_q*other_q - np.dot(self_p,other_p),
|
||||
self_q*other_p + other_q*self_p + P * np.cross(self_p,other_p))
|
||||
return __class__.fromQuaternion(r,acceptHomomorph=True)
|
||||
elif isinstance(other, np.ndarray):
|
||||
if other.shape == (3,): # rotate a single (3)-vector
|
||||
( x, y, z) = self.quaternion.p
|
||||
( x, y, z) = self.quaternion[1:]
|
||||
(Vx,Vy,Vz) = other[0:3]
|
||||
A = self.quaternion.q*self.quaternion.q - np.dot(self.quaternion.p,self.quaternion.p)
|
||||
A = self.quaternion[0]**2.0 - np.dot(self.quaternion[1:],self.quaternion[1:])
|
||||
B = 2.0 * (x*Vx + y*Vy + z*Vz)
|
||||
C = 2.0 * P*self.quaternion.q
|
||||
C = 2.0 * P*self.quaternion[0]
|
||||
|
||||
return np.array([
|
||||
A*Vx + B*x + C*(y*Vz - z*Vy),
|
||||
|
@ -106,11 +108,12 @@ class Rotation:
|
|||
else:
|
||||
return NotImplemented
|
||||
elif isinstance(other, tuple): # used to rotate a meshgrid-tuple
|
||||
( x, y, z) = self.quaternion.p
|
||||
( x, y, z) = self.quaternion[1:]
|
||||
(Vx,Vy,Vz) = other[0:3]
|
||||
A = self.quaternion.q*self.quaternion.q - np.dot(self.quaternion.p,self.quaternion.p)
|
||||
A = self.quaternion[0]**2.0 - np.dot(self.quaternion[1:],self.quaternion[1:])
|
||||
B = 2.0 * (x*Vx + y*Vy + z*Vz)
|
||||
C = 2.0 * P*self.quaternion.q
|
||||
C = 2.0 * P*self.quaternion[0]
|
||||
|
||||
|
||||
return np.array([
|
||||
A*Vx + B*x + C*(y*Vz - z*Vy),
|
||||
|
@ -123,7 +126,7 @@ class Rotation:
|
|||
|
||||
def inverse(self):
|
||||
"""In-place inverse rotation/backward rotation."""
|
||||
self.quaternion.conjugate()
|
||||
self.quaternion[1:] *= -1
|
||||
return self
|
||||
|
||||
def inversed(self):
|
||||
|
@ -133,7 +136,7 @@ class Rotation:
|
|||
|
||||
def standardize(self):
|
||||
"""In-place quaternion representation with positive q."""
|
||||
if self.quaternion.q < 0.0: self.quaternion.homomorph()
|
||||
if self.quaternion[0] < 0.0: self.quaternion*=-1
|
||||
return self
|
||||
|
||||
def standardized(self):
|
||||
|
@ -170,8 +173,7 @@ class Rotation:
|
|||
################################################################################################
|
||||
# convert to different orientation representations (numpy arrays)
|
||||
|
||||
def asQuaternion(self,
|
||||
quaternion = False):
|
||||
def asQuaternion(self):
|
||||
"""
|
||||
Unit quaternion [q, p_1, p_2, p_3] unless quaternion == True: damask.quaternion object.
|
||||
|
||||
|
@ -181,7 +183,7 @@ class Rotation:
|
|||
return quaternion as DAMASK object.
|
||||
|
||||
"""
|
||||
return self.quaternion if quaternion else self.quaternion.asArray()
|
||||
return self.quaternion
|
||||
|
||||
def asEulers(self,
|
||||
degrees = False):
|
||||
|
@ -194,7 +196,7 @@ class Rotation:
|
|||
return angles in degrees.
|
||||
|
||||
"""
|
||||
eu = qu2eu(self.quaternion.asArray())
|
||||
eu = qu2eu(self.quaternion)
|
||||
if degrees: eu = np.degrees(eu)
|
||||
return eu
|
||||
|
||||
|
@ -212,13 +214,13 @@ class Rotation:
|
|||
return tuple of axis and angle.
|
||||
|
||||
"""
|
||||
ax = qu2ax(self.quaternion.asArray())
|
||||
ax = qu2ax(self.quaternion)
|
||||
if degrees: ax[3] = np.degrees(ax[3])
|
||||
return (ax[:3],np.degrees(ax[3])) if pair else ax
|
||||
|
||||
def asMatrix(self):
|
||||
"""Rotation matrix."""
|
||||
return qu2om(self.quaternion.asArray())
|
||||
return qu2om(self.quaternion)
|
||||
|
||||
def asRodrigues(self,
|
||||
vector = False):
|
||||
|
@ -231,16 +233,16 @@ class Rotation:
|
|||
return as actual Rodrigues--Frank vector, i.e. rotation axis scaled by tan(ω/2).
|
||||
|
||||
"""
|
||||
ro = qu2ro(self.quaternion.asArray())
|
||||
ro = qu2ro(self.quaternion)
|
||||
return ro[:3]*ro[3] if vector else ro
|
||||
|
||||
def asHomochoric(self):
|
||||
"""Homochoric vector: (h_1, h_2, h_3)."""
|
||||
return qu2ho(self.quaternion.asArray())
|
||||
return qu2ho(self.quaternion)
|
||||
|
||||
def asCubochoric(self):
|
||||
"""Cubochoric vector: (c_1, c_2, c_3)."""
|
||||
return qu2cu(self.quaternion.asArray())
|
||||
return qu2cu(self.quaternion)
|
||||
|
||||
def asM(self):
|
||||
"""
|
||||
|
@ -252,7 +254,7 @@ class Rotation:
|
|||
https://doi.org/10.2514/1.28949
|
||||
|
||||
"""
|
||||
return self.quaternion.asM()
|
||||
return np.outer(self.quaternion,self.quaternion)
|
||||
|
||||
|
||||
################################################################################################
|
||||
|
|
Loading…
Reference in New Issue