leaner (and hopefully faster) code

This commit is contained in:
Martin Diehl 2020-01-14 05:32:42 +01:00
parent 31788301e9
commit ecb8510217
1 changed files with 28 additions and 26 deletions

View File

@ -3,7 +3,6 @@ import math
import numpy as np import numpy as np
from . import Lambert from . import Lambert
from .quaternion import Quaternion
from .quaternion import P from .quaternion import P
@ -49,10 +48,7 @@ class Rotation:
Unit quaternion that follows the conventions. Use .fromQuaternion to perform a sanity check. Unit quaternion that follows the conventions. Use .fromQuaternion to perform a sanity check.
""" """
if isinstance(quaternion,Quaternion):
self.quaternion = quaternion.copy() self.quaternion = quaternion.copy()
else:
self.quaternion = Quaternion(q=quaternion[0],p=quaternion[1:4])
def __copy__(self): def __copy__(self):
"""Copy.""" """Copy."""
@ -64,7 +60,7 @@ class Rotation:
def __repr__(self): def __repr__(self):
"""Orientation displayed as unit quaternion, rotation matrix, and Bunge-Euler angles.""" """Orientation displayed as unit quaternion, rotation matrix, and Bunge-Euler angles."""
return '\n'.join([ return '\n'.join([
'{}'.format(self.quaternion), 'Quaternion: (real={q:+.6f}, imag=<{p[0]:+.6f}, {p[1]:+.6f}, {p[2]:+.6f}>)'.format(*(self.quaternion)),
'Matrix:\n{}'.format( '\n'.join(['\t'.join(list(map(str,self.asMatrix()[i,:]))) for i in range(3)]) ), 'Matrix:\n{}'.format( '\n'.join(['\t'.join(list(map(str,self.asMatrix()[i,:]))) for i in range(3)]) ),
'Bunge Eulers / deg: {}'.format('\t'.join(list(map(str,self.asEulers(degrees=True)))) ), 'Bunge Eulers / deg: {}'.format('\t'.join(list(map(str,self.asEulers(degrees=True)))) ),
]) ])
@ -85,14 +81,20 @@ class Rotation:
""" """
if isinstance(other, Rotation): # rotate a rotation if isinstance(other, Rotation): # rotate a rotation
return self.__class__(self.quaternion * other.quaternion).standardize() self_q = self.quaternion[0]
self_p = self.quaternion[1:]
other_q = other.quaternion[0]
other_p = other.quaternion[1:]
r = np.append(self_q*other_q - np.dot(self_p,other_p),
self_q*other_p + other_q*self_p + P * np.cross(self_p,other_p))
return __class__.fromQuaternion(r,acceptHomomorph=True)
elif isinstance(other, np.ndarray): elif isinstance(other, np.ndarray):
if other.shape == (3,): # rotate a single (3)-vector if other.shape == (3,): # rotate a single (3)-vector
( x, y, z) = self.quaternion.p ( x, y, z) = self.quaternion[1:]
(Vx,Vy,Vz) = other[0:3] (Vx,Vy,Vz) = other[0:3]
A = self.quaternion.q*self.quaternion.q - np.dot(self.quaternion.p,self.quaternion.p) A = self.quaternion[0]**2.0 - np.dot(self.quaternion[1:],self.quaternion[1:])
B = 2.0 * (x*Vx + y*Vy + z*Vz) B = 2.0 * (x*Vx + y*Vy + z*Vz)
C = 2.0 * P*self.quaternion.q C = 2.0 * P*self.quaternion[0]
return np.array([ return np.array([
A*Vx + B*x + C*(y*Vz - z*Vy), A*Vx + B*x + C*(y*Vz - z*Vy),
@ -106,11 +108,12 @@ class Rotation:
else: else:
return NotImplemented return NotImplemented
elif isinstance(other, tuple): # used to rotate a meshgrid-tuple elif isinstance(other, tuple): # used to rotate a meshgrid-tuple
( x, y, z) = self.quaternion.p ( x, y, z) = self.quaternion[1:]
(Vx,Vy,Vz) = other[0:3] (Vx,Vy,Vz) = other[0:3]
A = self.quaternion.q*self.quaternion.q - np.dot(self.quaternion.p,self.quaternion.p) A = self.quaternion[0]**2.0 - np.dot(self.quaternion[1:],self.quaternion[1:])
B = 2.0 * (x*Vx + y*Vy + z*Vz) B = 2.0 * (x*Vx + y*Vy + z*Vz)
C = 2.0 * P*self.quaternion.q C = 2.0 * P*self.quaternion[0]
return np.array([ return np.array([
A*Vx + B*x + C*(y*Vz - z*Vy), A*Vx + B*x + C*(y*Vz - z*Vy),
@ -123,7 +126,7 @@ class Rotation:
def inverse(self): def inverse(self):
"""In-place inverse rotation/backward rotation.""" """In-place inverse rotation/backward rotation."""
self.quaternion.conjugate() self.quaternion[1:] *= -1
return self return self
def inversed(self): def inversed(self):
@ -133,7 +136,7 @@ class Rotation:
def standardize(self): def standardize(self):
"""In-place quaternion representation with positive q.""" """In-place quaternion representation with positive q."""
if self.quaternion.q < 0.0: self.quaternion.homomorph() if self.quaternion[0] < 0.0: self.quaternion*=-1
return self return self
def standardized(self): def standardized(self):
@ -170,8 +173,7 @@ class Rotation:
################################################################################################ ################################################################################################
# convert to different orientation representations (numpy arrays) # convert to different orientation representations (numpy arrays)
def asQuaternion(self, def asQuaternion(self):
quaternion = False):
""" """
Unit quaternion [q, p_1, p_2, p_3] unless quaternion == True: damask.quaternion object. Unit quaternion [q, p_1, p_2, p_3] unless quaternion == True: damask.quaternion object.
@ -181,7 +183,7 @@ class Rotation:
return quaternion as DAMASK object. return quaternion as DAMASK object.
""" """
return self.quaternion if quaternion else self.quaternion.asArray() return self.quaternion
def asEulers(self, def asEulers(self,
degrees = False): degrees = False):
@ -194,7 +196,7 @@ class Rotation:
return angles in degrees. return angles in degrees.
""" """
eu = qu2eu(self.quaternion.asArray()) eu = qu2eu(self.quaternion)
if degrees: eu = np.degrees(eu) if degrees: eu = np.degrees(eu)
return eu return eu
@ -212,13 +214,13 @@ class Rotation:
return tuple of axis and angle. return tuple of axis and angle.
""" """
ax = qu2ax(self.quaternion.asArray()) ax = qu2ax(self.quaternion)
if degrees: ax[3] = np.degrees(ax[3]) if degrees: ax[3] = np.degrees(ax[3])
return (ax[:3],np.degrees(ax[3])) if pair else ax return (ax[:3],np.degrees(ax[3])) if pair else ax
def asMatrix(self): def asMatrix(self):
"""Rotation matrix.""" """Rotation matrix."""
return qu2om(self.quaternion.asArray()) return qu2om(self.quaternion)
def asRodrigues(self, def asRodrigues(self,
vector = False): vector = False):
@ -231,16 +233,16 @@ class Rotation:
return as actual Rodrigues--Frank vector, i.e. rotation axis scaled by tan(ω/2). return as actual Rodrigues--Frank vector, i.e. rotation axis scaled by tan(ω/2).
""" """
ro = qu2ro(self.quaternion.asArray()) ro = qu2ro(self.quaternion)
return ro[:3]*ro[3] if vector else ro return ro[:3]*ro[3] if vector else ro
def asHomochoric(self): def asHomochoric(self):
"""Homochoric vector: (h_1, h_2, h_3).""" """Homochoric vector: (h_1, h_2, h_3)."""
return qu2ho(self.quaternion.asArray()) return qu2ho(self.quaternion)
def asCubochoric(self): def asCubochoric(self):
"""Cubochoric vector: (c_1, c_2, c_3).""" """Cubochoric vector: (c_1, c_2, c_3)."""
return qu2cu(self.quaternion.asArray()) return qu2cu(self.quaternion)
def asM(self): def asM(self):
""" """
@ -252,7 +254,7 @@ class Rotation:
https://doi.org/10.2514/1.28949 https://doi.org/10.2514/1.28949
""" """
return self.quaternion.asM() return np.outer(self.quaternion,self.quaternion)
################################################################################################ ################################################################################################
@ -264,7 +266,7 @@ class Rotation:
acceptHomomorph = False, acceptHomomorph = False,
P = -1): P = -1):
qu = quaternion if isinstance(quaternion, np.ndarray) and quaternion.dtype == np.dtype(float) \ qu = quaternion if isinstance(quaternion,np.ndarray) and quaternion.dtype == np.dtype(float) \
else np.array(quaternion,dtype=float) else np.array(quaternion,dtype=float)
if P > 0: qu[1:4] *= -1 # convert from P=1 to P=-1 if P > 0: qu[1:4] *= -1 # convert from P=1 to P=-1
if qu[0] < 0.0: if qu[0] < 0.0: