equivalent,related and inFZ vectorized + pytest

This commit is contained in:
f.basile 2020-06-05 13:48:12 +02:00
parent ac09a2912a
commit eae9698d22
3 changed files with 127 additions and 43 deletions

View File

@ -77,25 +77,37 @@ class Orientation:
return (Orientation(r,self.lattice), i,j, k == 1) if symmetries else r # disorientation ... return (Orientation(r,self.lattice), i,j, k == 1) if symmetries else r # disorientation ...
# ... own sym, other sym, # ... own sym, other sym,
# self-->other: True, self<--other: False # self-->other: True, self<--other: False
def inFZ_vec(self):
"""
Check if orientations falls into Fundamental Zone
self.rotation.as_Rodrigues() working fine
self.rotation.as_Rodrigues(vector=True) doesn't work for several rotations
i apply dirty fix
"""
if not self.rotation.shape:
return self.lattice.symmetry.inFZ(self.rotation.as_Rodrigues(vector=True))
else:
return [self.lattice.symmetry.inFZ(\
Rotation._qu2ro(self.rotation.as_quaternion())[l][...,:3]\
*Rotation._qu2ro(self.rotation.as_quaternion())[l][...,3])\
for l in range(self.rotation.shape[0])]
def inFZ(self): def inFZ(self):
return self.lattice.symmetry.inFZ(self.rotation.as_Rodrigues(vector=True)) return self.lattice.symmetry.inFZ(self.rotation.as_Rodrigues(vector=True))
def equivalent(self): def equivalent_vec(self):
""" """List of orientations which are symmetrically equivalent."""
List of orientations which are symmetrically equivalent.
Supported for multiple rotation with same lattice
Returns list [i] being i=range(24)
Returns list [i, num_rot] for multiple rotations
"""
if not self.rotation.shape: if not self.rotation.shape:
return [self.__class__(q*self.rotation,self.lattice) \ return [self.__class__(q*self.rotation,self.lattice) \
for q in self.lattice.symmetry.symmetryOperations()] for q in self.lattice.symmetry.symmetryOperations()]
else: else:
return np.reshape([self.__class__(q*Rotation.from_quaternion(self.rotation.as_quaternion()[l]),self.lattice) \ return np.reshape([self.__class__(q*Rotation.from_quaternion(self.rotation.as_quaternion()[l]),self.lattice) \
for q in self.lattice.symmetry.symmetryOperations() \ for q in self.lattice.symmetry.symmetryOperations() \
for l in range(self.rotation.shape[0])], (24,self.rotation.shape[0])) for l in range(self.rotation.shape[0])], \
(len(self.lattice.symmetry.symmetryOperations()),self.rotation.shape[0]))
def equivalentOrientations(self,members=[]): def equivalentOrientations(self,members=[]):
@ -108,6 +120,18 @@ class Orientation:
return [self.__class__(q*self.rotation,self.lattice) \ return [self.__class__(q*self.rotation,self.lattice) \
for q in self.lattice.symmetry.symmetryOperations(members)] # yes, return list of rotations for q in self.lattice.symmetry.symmetryOperations(members)] # yes, return list of rotations
def relatedOrientations_vec(self,model):
"""List of orientations related by the given orientation relationship."""
r = self.lattice.relationOperations(model)
if not self.rotation.shape:
return [self.__class__(o*self.rotation,r['lattice']) for o in r['rotations']]
else:
return np.reshape(\
[self.__class__(o*Rotation.from_quaternion(self.rotation.as_quaternion()[l])\
,r['lattice']) for o in r['rotations'] for l in range(self.rotation.shape[0])]
,(len(r['rotations']),self.rotation.shape[0]))
def relatedOrientations(self,model): def relatedOrientations(self,model):
"""List of orientations related by the given orientation relationship.""" """List of orientations related by the given orientation relationship."""
r = self.lattice.relationOperations(model) r = self.lattice.relationOperations(model)

View File

@ -1,33 +0,0 @@
import damask
import numpy as np
rot0= damask.Rotation.from_random()
rot1= damask.Rotation.from_random()
rot2= damask.Rotation.from_random()
ori0=damask.Orientation(rot0,'fcc')
ori1=damask.Orientation(rot1,'fcc')
ori2=damask.Orientation(rot2,'fcc')
quat=np.array([rot0.as_quaternion(),rot1.as_quaternion(),rot2.as_quaternion()])
rot=damask.Rotation.from_quaternion(quat)
ori=damask.Orientation(rot,'fcc')
ori.equivalent()
# doesn't work this way, don't know why
#ori.equivalent()[:,0][0] == ori0.equivalentOrientations()[0]
for s in range(24):
print(ori.equivalent()[s,0].rotation.as_Eulers() == ori0.equivalentOrientations()[s].rotation.as_Eulers())
print(ori.equivalent()[s,1].rotation.as_Eulers() == ori1.equivalentOrientations()[s].rotation.as_Eulers())
print(ori.equivalent()[s,2].rotation.as_Eulers() == ori2.equivalentOrientations()[s].rotation.as_Eulers())

View File

@ -0,0 +1,93 @@
import os
from itertools import permutations
import pytest
import numpy as np
import damask
from damask import Rotation
from damask import Orientation
from damask import Lattice
rot0= damask.Rotation.from_random()
rot1= damask.Rotation.from_random()
rot2= damask.Rotation.from_random()
rot3= damask.Rotation.from_random()
class TestOrientation_vec:
@pytest.mark.parametrize('lattice',Lattice.lattices)
def test_equivalentOrientations_vec(self,lattice):
ori0=damask.Orientation(rot0,lattice)
ori1=damask.Orientation(rot1,lattice)
ori2=damask.Orientation(rot2,lattice)
ori3=damask.Orientation(rot3,lattice)
quat=np.array([rot0.as_quaternion(),rot1.as_quaternion(),rot2.as_quaternion(),rot3.as_quaternion()])
rot_vec=damask.Rotation.from_quaternion(quat)
ori_vec=damask.Orientation(rot_vec,lattice)
for s in range(len(ori_vec.lattice.symmetry.symmetryOperations())):
assert all(ori_vec.equivalent_vec()[s,0].rotation.as_Eulers() == \
ori0.equivalentOrientations()[s].rotation.as_Eulers())
assert all(ori_vec.equivalent_vec()[s,1].rotation.as_quaternion() == \
ori1.equivalentOrientations()[s].rotation.as_quaternion())
assert all(ori_vec.equivalent_vec()[s,2].rotation.as_Rodrigues() == \
ori2.equivalentOrientations()[s].rotation.as_Rodrigues())
assert all(ori_vec.equivalent_vec()[s,3].rotation.as_cubochoric() == \
ori3.equivalentOrientations()[s].rotation.as_cubochoric())
@pytest.mark.parametrize('lattice',Lattice.lattices)
def test_inFZ_vec(self,lattice):
ori0=damask.Orientation(rot0,lattice)
ori1=damask.Orientation(rot1,lattice)
ori2=damask.Orientation(rot2,lattice)
ori3=damask.Orientation(rot3,lattice)
#ensure 1 of them is in FZ
ori4=ori0.reduced()
rot4=ori4.rotation
quat=np.array([rot0.as_quaternion(),rot1.as_quaternion(),\
rot2.as_quaternion(),rot3.as_quaternion(), rot4.as_quaternion()])
rot_vec=damask.Rotation.from_quaternion(quat)
ori_vec=damask.Orientation(rot_vec,lattice)
assert ori_vec.inFZ_vec()[0] == ori0.inFZ()
assert ori_vec.inFZ_vec()[1] == ori1.inFZ()
assert ori_vec.inFZ_vec()[2] == ori2.inFZ()
assert ori_vec.inFZ_vec()[3] == ori3.inFZ()
assert ori_vec.inFZ_vec()[4] == ori4.inFZ()
@pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch'])
@pytest.mark.parametrize('lattice',['fcc','bcc'])
def test_relatedOrientations_vec(self,model,lattice):
ori0=damask.Orientation(rot0,lattice)
ori1=damask.Orientation(rot1,lattice)
ori2=damask.Orientation(rot2,lattice)
ori3=damask.Orientation(rot3,lattice)
quat=np.array([rot0.as_quaternion(),rot1.as_quaternion(),rot2.as_quaternion(),rot3.as_quaternion()])
rot_vec=damask.Rotation.from_quaternion(quat)
ori_vec=damask.Orientation(rot_vec,lattice)
for s in range(len(ori1.lattice.relationOperations(model)['rotations'])):
assert all(ori_vec.relatedOrientations_vec(model)[s,0].rotation.as_Eulers() == \
ori0.relatedOrientations(model)[s].rotation.as_Eulers())
assert all(ori_vec.relatedOrientations_vec(model)[s,1].rotation.as_quaternion() == \
ori1.relatedOrientations(model)[s].rotation.as_quaternion())
assert all(ori_vec.relatedOrientations_vec(model)[s,2].rotation.as_Rodrigues() == \
ori2.relatedOrientations(model)[s].rotation.as_Rodrigues())
assert all(ori_vec.relatedOrientations_vec(model)[s,3].rotation.as_cubochoric() == \
ori3.relatedOrientations(model)[s].rotation.as_cubochoric())