cleaning + renaming
This commit is contained in:
parent
0b94b8085d
commit
e9f738fade
|
@ -123,7 +123,8 @@ module plastic_dislotwin
|
|||
interaction_TwinTwin, & !< coefficients for twin-twin interaction for each interaction type and instance
|
||||
interaction_SlipTrans, & !< coefficients for slip-trans interaction for each interaction type and instance
|
||||
interaction_TransSlip, & !< coefficients for trans-slip interaction for each interaction type and instance
|
||||
interaction_TransTrans, & !< coefficients for trans-trans interaction for each interaction type and instance
|
||||
interaction_TransTrans !< coefficients for trans-trans interaction for each interaction type and instance
|
||||
integer(pInt), dimension(:,:), allocatable, private :: &
|
||||
fcc_twinNucleationSlipPair
|
||||
real(pReal), dimension(:,:,:), allocatable :: &
|
||||
Schmid_trans, &
|
||||
|
@ -482,12 +483,6 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
case ('shear_rate_shearband','shearrate_shearband')
|
||||
outputID = shear_rate_shearband_ID
|
||||
outputSize = 6_pInt
|
||||
case ('sb_eigenvalues')
|
||||
outputID = sb_eigenvalues_ID
|
||||
outputSize = 3_pInt
|
||||
case ('sb_eigenvectors')
|
||||
outputID = sb_eigenvectors_ID
|
||||
outputSize = 3_pInt
|
||||
|
||||
case ('stress_trans_fraction')
|
||||
outputID = stress_trans_fraction_ID
|
||||
|
@ -679,7 +674,7 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
allocate(Ctwin3333(3,3,3,3,prm%totalNtwin), source=0.0_pReal)
|
||||
allocate(prm%Schmid_twin(3,3,prm%totalNtwin),source = 0.0_pReal)
|
||||
if (lattice_structure(p) == LATTICE_fcc_ID) &
|
||||
allocate(prm%fcc_twinNucleationSlipPair(2,prm%totalNtwin),source = 0.0_pReal)
|
||||
allocate(prm%fcc_twinNucleationSlipPair(2,prm%totalNtwin),source = 0_pInt)
|
||||
allocate(prm%shear_twin(prm%totalNtwin),source = 0.0_pReal)
|
||||
i = 0_pInt
|
||||
twinFamiliesLoop: do f = 1_pInt, size(prm%Ntwin,1)
|
||||
|
@ -962,7 +957,7 @@ function plastic_dislotwin_homogenizedC(ipc,ip,el)
|
|||
ip, & !< integration point
|
||||
el !< element
|
||||
type(tParameters) :: prm
|
||||
type(tDislotwinState) :: ste
|
||||
type(tDislotwinState) :: stt
|
||||
|
||||
integer(pInt) :: instance,i, &
|
||||
ph, &
|
||||
|
@ -973,25 +968,25 @@ function plastic_dislotwin_homogenizedC(ipc,ip,el)
|
|||
of = phasememberAt(ipc,ip,el)
|
||||
ph = phaseAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(ph)
|
||||
associate( prm => param(instance), ste =>state(instance))
|
||||
associate( prm => param(instance), stt =>state(instance))
|
||||
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(ste%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
|
||||
sumf = sum(stt%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
|
||||
|
||||
!* Total transformed volume fraction
|
||||
sumftr = sum(ste%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
|
||||
sum(ste%strainTransFraction(1_pInt:prm%totalNtrans,of))
|
||||
sumftr = sum(stt%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
|
||||
sum(stt%strainTransFraction(1_pInt:prm%totalNtrans,of))
|
||||
|
||||
!* Homogenized elasticity matrix
|
||||
plastic_dislotwin_homogenizedC = (1.0_pReal-sumf-sumftr)*lattice_C66(1:6,1:6,ph)
|
||||
do i=1_pInt,prm%totalNtwin
|
||||
plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC &
|
||||
+ ste%twinFraction(i,of)*prm%Ctwin66(1:6,1:6,i)
|
||||
+ stt%twinFraction(i,of)*prm%Ctwin66(1:6,1:6,i)
|
||||
enddo
|
||||
do i=1_pInt,prm%totalNtrans
|
||||
plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC &
|
||||
+ (ste%stressTransFraction(i,of) + ste%strainTransFraction(i,of))*&
|
||||
+ (stt%stressTransFraction(i,of) + stt%strainTransFraction(i,of))*&
|
||||
prm%Ctrans66(1:6,1:6,i)
|
||||
enddo
|
||||
end associate
|
||||
|
@ -1032,94 +1027,90 @@ subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
fOverStacksize, &
|
||||
ftransOverLamellarSize
|
||||
|
||||
type(tParameters):: prm
|
||||
type(tDislotwinState) :: ste
|
||||
type(tParameters) :: prm !< parameters of present instance
|
||||
type(tDislotwinState) :: stt !< state of present instance
|
||||
|
||||
|
||||
!* Shortened notation
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
ph = phaseAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(ph)
|
||||
ph = material_phase(ipc,ip,el)
|
||||
|
||||
associate(prm => param(instance), &
|
||||
ste => state(instance))
|
||||
associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))),&
|
||||
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||
|
||||
sumf = sum(ste%twinFraction(1:prm%totalNtwin,of))
|
||||
|
||||
sumftr = sum(ste%stressTransFraction(1:prm%totalNtrans,of)) + &
|
||||
sum(ste%strainTransFraction(1:prm%totalNtrans,of))
|
||||
sumf = sum(stt%twinFraction(1:prm%totalNtwin,of))
|
||||
sumftr = sum(stt%stressTransFraction(1:prm%totalNtrans,of)) &
|
||||
+ sum(stt%strainTransFraction(1:prm%totalNtrans,of))
|
||||
|
||||
sfe = prm%SFE_0K + prm%dSFE_dT * Temperature
|
||||
|
||||
!* rescaled volume fraction for topology
|
||||
fOverStacksize = ste%twinFraction(1_pInt:prm%totalNtwin,of)/prm%twinsize
|
||||
fOverStacksize = stt%twinFraction(1_pInt:prm%totalNtwin,of)/prm%twinsize
|
||||
ftransOverLamellarSize = sumftr /prm%lamellarsizePerTransSystem
|
||||
|
||||
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
||||
forall (s = 1_pInt:prm%totalNslip) &
|
||||
ste%invLambdaSlip(s,of) = &
|
||||
sqrt(dot_product((ste%rhoEdge(1_pInt:prm%totalNslip,of)+ste%rhoEdgeDip(1_pInt:prm%totalNslip,of)),&
|
||||
stt%invLambdaSlip(s,of) = &
|
||||
sqrt(dot_product((stt%rhoEdge(1_pInt:prm%totalNslip,of)+stt%rhoEdgeDip(1_pInt:prm%totalNslip,of)),&
|
||||
forestProjectionEdge(1:prm%totalNslip,s,instance)))/prm%CLambdaSlipPerSlipSystem(s)
|
||||
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
|
||||
!$OMP CRITICAL (evilmatmul)
|
||||
if (prm%totalNtwin > 0_pInt .and. prm%totalNslip > 0_pInt) &
|
||||
ste%invLambdaSlipTwin(1_pInt:prm%totalNslip,of) = &
|
||||
stt%invLambdaSlipTwin(1_pInt:prm%totalNslip,of) = &
|
||||
matmul(prm%interaction_SlipTwin,fOverStacksize)/(1.0_pReal-sumf)
|
||||
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
|
||||
|
||||
!ToDo: needed? if (prm%totalNtwin > 0_pInt) &
|
||||
ste%invLambdaTwin(1_pInt:prm%totalNtwin,of) = &
|
||||
stt%invLambdaTwin(1_pInt:prm%totalNtwin,of) = &
|
||||
matmul(prm%interaction_TwinTwin,fOverStacksize)/(1.0_pReal-sumf)
|
||||
|
||||
|
||||
!* 1/mean free distance between 2 martensite lamellar from different systems seen by a moving dislocation
|
||||
if (prm%totalNtrans > 0_pInt .and. prm%totalNslip > 0_pInt) &
|
||||
ste%invLambdaSlipTrans(1_pInt:prm%totalNslip,of) = &
|
||||
stt%invLambdaSlipTrans(1_pInt:prm%totalNslip,of) = &
|
||||
matmul(prm%interaction_SlipTrans,ftransOverLamellarSize)/(1.0_pReal-sumftr)
|
||||
|
||||
!* 1/mean free distance between 2 martensite stacks from different systems seen by a growing martensite (1/lambda_trans)
|
||||
!ToDo: needed? if (prm%totalNtrans > 0_pInt) &
|
||||
|
||||
ste%invLambdaTrans(1_pInt:prm%totalNtrans,of) = &
|
||||
stt%invLambdaTrans(1_pInt:prm%totalNtrans,of) = &
|
||||
matmul(prm%interaction_TransTrans,ftransOverLamellarSize)/(1.0_pReal-sumftr)
|
||||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
!* mean free path between 2 obstacles seen by a moving dislocation
|
||||
do s = 1_pInt,prm%totalNslip
|
||||
if ((prm%totalNtwin > 0_pInt) .or. (prm%totalNtrans > 0_pInt)) then ! ToDo: This is too simplified
|
||||
ste%mfp_slip(s,of) = &
|
||||
stt%mfp_slip(s,of) = &
|
||||
prm%GrainSize/(1.0_pReal+prm%GrainSize*&
|
||||
(ste%invLambdaSlip(s,of) + ste%invLambdaSlipTwin(s,of) + ste%invLambdaSlipTrans(s,of)))
|
||||
(stt%invLambdaSlip(s,of) + stt%invLambdaSlipTwin(s,of) + stt%invLambdaSlipTrans(s,of)))
|
||||
else
|
||||
ste%mfp_slip(s,of) = &
|
||||
stt%mfp_slip(s,of) = &
|
||||
prm%GrainSize/&
|
||||
(1.0_pReal+prm%GrainSize*(ste%invLambdaSlip(s,of))) !!!!!! correct?
|
||||
(1.0_pReal+prm%GrainSize*(stt%invLambdaSlip(s,of))) !!!!!! correct?
|
||||
endif
|
||||
enddo
|
||||
|
||||
!* mean free path between 2 obstacles seen by a growing twin/martensite
|
||||
ste%mfp_twin(:,of) = prm%Cmfptwin*prm%GrainSize/ (1.0_pReal+prm%GrainSize*ste%invLambdaTwin(:,of))
|
||||
ste%mfp_trans(:,of) = prm%Cmfptrans*prm%GrainSize/(1.0_pReal+prm%GrainSize*ste%invLambdaTrans(:,of))
|
||||
stt%mfp_twin(:,of) = prm%Cmfptwin*prm%GrainSize/ (1.0_pReal+prm%GrainSize*stt%invLambdaTwin(:,of))
|
||||
stt%mfp_trans(:,of) = prm%Cmfptrans*prm%GrainSize/(1.0_pReal+prm%GrainSize*stt%invLambdaTrans(:,of))
|
||||
|
||||
!* threshold stress for dislocation motion
|
||||
forall (s = 1_pInt:prm%totalNslip) ste%threshold_stress_slip(s,of) = &
|
||||
forall (s = 1_pInt:prm%totalNslip) stt%threshold_stress_slip(s,of) = &
|
||||
lattice_mu(ph)*prm%burgers_slip(s)*&
|
||||
sqrt(dot_product(ste%rhoEdge(1_pInt:prm%totalNslip,of)+ste%rhoEdgeDip(1_pInt:prm%totalNslip,of),&
|
||||
sqrt(dot_product(stt%rhoEdge(1_pInt:prm%totalNslip,of)+stt%rhoEdgeDip(1_pInt:prm%totalNslip,of),&
|
||||
prm%interaction_SlipSlip(s,1:prm%totalNslip)))
|
||||
|
||||
!* threshold stress for growing twin/martensite
|
||||
ste%threshold_stress_twin(:,of) = prm%Cthresholdtwin* &
|
||||
stt%threshold_stress_twin(:,of) = prm%Cthresholdtwin* &
|
||||
(sfe/(3.0_pReal*prm%burgers_twin)+ 3.0_pReal*prm%burgers_twin*lattice_mu(ph)/ &
|
||||
(prm%L0_twin*prm%burgers_slip)) ! slip burgers here correct?
|
||||
ste%threshold_stress_trans(:,of) = prm%Cthresholdtrans* &
|
||||
stt%threshold_stress_trans(:,of) = prm%Cthresholdtrans* &
|
||||
(sfe/(3.0_pReal*prm%burgers_trans) + 3.0_pReal*prm%burgers_trans*lattice_mu(ph)/&
|
||||
(prm%L0_trans*prm%burgers_slip) + prm%transStackHeight*prm%deltaG/ (3.0_pReal*prm%burgers_trans) )
|
||||
|
||||
! final volume after growth
|
||||
ste%twinVolume(:,of) = (PI/4.0_pReal)*prm%twinsize*ste%mfp_twin(:,of)**2.0_pReal
|
||||
ste%martensiteVolume(:,of) = (PI/4.0_pReal)*prm%lamellarsizePerTransSystem*ste%mfp_trans(:,of)**2.0_pReal
|
||||
stt%twinVolume(:,of) = (PI/4.0_pReal)*prm%twinsize*stt%mfp_twin(:,of)**2.0_pReal
|
||||
stt%martensiteVolume(:,of) = (PI/4.0_pReal)*prm%lamellarsizePerTransSystem*stt%mfp_trans(:,of)**2.0_pReal
|
||||
|
||||
|
||||
|
||||
|
@ -1169,7 +1160,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
real(pReal), dimension(3,3), intent(out) :: Lp
|
||||
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar99
|
||||
|
||||
integer(pInt) :: instance,ph,of,j,k,l,m,n,s1,s2
|
||||
integer(pInt) :: ph,of,j,k,l,m,n,s1,s2,instance
|
||||
real(pReal) :: sumf,sumftr,StressRatio_p,StressRatio_pminus1,&
|
||||
StressRatio_r,BoltzmannRatio,Ndot0_twin,stressRatio, &
|
||||
Ndot0_trans,StressRatio_s, &
|
||||
|
@ -1204,73 +1195,66 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
|
||||
real(pReal), dimension(3,3) :: &
|
||||
S !< Second-Piola Kirchhoff stress
|
||||
type(tParameters) :: prm
|
||||
type(tParameters) :: prm !< parameters of present instance
|
||||
type(tDislotwinState) :: ste !< state of present instance
|
||||
|
||||
!* Shortened notation
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
ph = phaseAt(ipc,ip,el)
|
||||
ph = material_phase(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(ph)
|
||||
|
||||
associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))),&
|
||||
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||
|
||||
sumf = sum(stt%twinFraction(1:prm%totalNtwin,of))
|
||||
sumftr = sum(stt%stressTransFraction(1:prm%totalNtrans,of)) &
|
||||
+ sum(stt%strainTransFraction(1:prm%totalNtrans,of))
|
||||
|
||||
Lp = 0.0_pReal
|
||||
dLp_dS = 0.0_pReal
|
||||
|
||||
S = math_Mandel6to33(Tstar_v)
|
||||
|
||||
associate(prm => param(instance))
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Dislocation glide part
|
||||
slipSystems: do j = 1_pInt, prm%totalNslip
|
||||
slipContribution: do j = 1_pInt, prm%totalNslip
|
||||
|
||||
tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
|
||||
significantSlipStress: if((abs(tau)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
stressRatio =((abs(tau)- state(instance)%threshold_stress_slip(j,of))/&
|
||||
significantSlipStress: if((abs(tau)-stt%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
stressRatio = ((abs(tau)- stt%threshold_stress_slip(j,of))/&
|
||||
(prm%SolidSolutionStrength+prm%tau_peierls(j)))
|
||||
StressRatio_p = stressRatio** prm%p(j)
|
||||
StressRatio_pminus1 = stressRatio**(prm%p(j)-1.0_pReal) ! ToDo: no very helpful
|
||||
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
|
||||
gdot_slip(j) = state(instance)%rhoEdge(j,of)*prm%burgers_slip(j)* prm%v0(j) &
|
||||
* sign(exp(-BoltzmannRatio*(1-StressRatio_p)** prm%q(j)), tau)
|
||||
|
||||
!* Derivatives of shear rates
|
||||
gdot_slip(j) = stt%rhoEdge(j,of)*prm%burgers_slip(j)* prm%v0(j) &
|
||||
* sign(exp(-BoltzmannRatio*(1-StressRatio_p)** prm%q(j)), tau)
|
||||
dgdot_dtau = abs(gdot_slip(j))*BoltzmannRatio*prm%p(j) * prm%q(j) &
|
||||
/ (prm%SolidSolutionStrength+prm%tau_peierls(j)) &
|
||||
* StressRatio_pminus1*(1-StressRatio_p)**(prm%q(j)-1.0_pReal)
|
||||
else significantSlipStress
|
||||
gdot_slip(j) = 0.0_pReal
|
||||
dgdot_dtau = 0.0_pReal
|
||||
endif significantSlipStress
|
||||
|
||||
Lp = Lp + gdot_slip(j)*prm%Schmid_slip(1:3,1:3,j)
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) &
|
||||
+ dgdot_dtau * prm%Schmid_slip(k,l,j) * prm%Schmid_slip(m,n,j)
|
||||
enddo slipSystems
|
||||
else significantSlipStress
|
||||
gdot_slip(j) = 0.0_pReal
|
||||
endif significantSlipStress
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! correct Lp and dLp_dS for twinned and transformed fraction
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
|
||||
enddo slipContribution
|
||||
|
||||
!* Total transformed volume fraction
|
||||
sumftr = sum(state(instance)%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
|
||||
sum(state(instance)%strainTransFraction(1_pInt:prm%totalNtrans,of))
|
||||
!ToDo: Why do this before shear banding?
|
||||
Lp = Lp * (1.0_pReal - sumf - sumftr)
|
||||
dLp_dS = dLp_dS * (1.0_pReal - sumf - sumftr)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Shear banding (shearband) part
|
||||
if(dNeq0(prm%sbVelocity)) then
|
||||
shearBanding: if(dNeq0(prm%sbVelocity)) then
|
||||
|
||||
BoltzmannRatio = prm%sbQedge/(kB*Temperature)
|
||||
call math_eigenValuesVectorsSym(S,eigValues,eigVectors,error)
|
||||
|
||||
do j = 1_pInt,6_pInt
|
||||
sb_s = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_sComposition(1:3,j))
|
||||
sb_m = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_mComposition(1:3,j))
|
||||
sb_Smatrix = math_tensorproduct33(sb_s,sb_m)
|
||||
sbSv(1:6,j,ipc,ip,el) = math_Mandel33to6(math_symmetric33(sb_Smatrix))
|
||||
|
||||
!* Calculation of Lp
|
||||
!* Resolved shear stress on shear banding system
|
||||
tau = dot_product(Tstar_v,sbSv(1:6,j,ipc,ip,el))
|
||||
|
||||
!* Stress ratios
|
||||
|
@ -1290,18 +1274,22 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) &
|
||||
+ dgdot_dtau * sb_Smatrix(k,l) * sb_Smatrix(m,n)
|
||||
enddo
|
||||
end if
|
||||
|
||||
twinSystems: do j = 1_pInt, prm%totalNtwin
|
||||
endif shearBanding
|
||||
|
||||
twinContibution: do j = 1_pInt, prm%totalNtwin
|
||||
|
||||
tau = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
|
||||
|
||||
significantTwinStress: if (tau > tol_math_check) then
|
||||
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau)**prm%r(j)
|
||||
StressRatio_r = (stt%threshold_stress_twin(j,of)/tau)**prm%r(j)
|
||||
|
||||
isFCCtwin: if (lattice_structure(ph) == LATTICE_FCC_ID) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||
if (tau < tau_r_twin(j,instance)) then
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||||
abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
|
||||
(prm%L0_twin*prm%burgers_slip(j))*&
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||||
(tau_r_twin(j,instance)-tau)))
|
||||
|
@ -1311,30 +1299,32 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
else isFCCtwin
|
||||
Ndot0_twin=prm%Ndot0_twin(j)
|
||||
endif isFCCtwin
|
||||
gdot_twin = (1.0_pReal-sumf-sumftr)* prm%shear_twin(j) * state(instance)%twinVolume(j,of) &
|
||||
|
||||
gdot_twin = (1.0_pReal-sumf-sumftr)* prm%shear_twin(j) * stt%twinVolume(j,of) &
|
||||
* Ndot0_twin*exp(-StressRatio_r)
|
||||
dgdot_dtau = ((gdot_twin*prm%r(j))/tau)*StressRatio_r
|
||||
else significantTwinStress
|
||||
gdot_twin = 0.0_pReal
|
||||
dgdot_dtau = 0.0_pReal
|
||||
endif significantTwinStress
|
||||
|
||||
Lp = Lp + gdot_twin*prm%Schmid_twin(1:3,1:3,j)
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) &
|
||||
+ dgdot_dtau* prm%Schmid_twin(k,l,j)*prm%Schmid_twin(m,n,j)
|
||||
enddo twinSystems
|
||||
endif significantTwinStress
|
||||
|
||||
enddo twinContibution
|
||||
|
||||
transConstribution: do j = 1_pInt, prm%totalNtrans
|
||||
|
||||
transSystems: do j = 1_pInt, prm%totalNtrans
|
||||
tau = math_mul33xx33(S,prm%Schmid_trans(1:3,1:3,j))
|
||||
|
||||
significantTransStress: if (tau > tol_math_check) then
|
||||
StressRatio_s = (state(instance)%threshold_stress_trans(j,of)/tau)**prm%s(j)
|
||||
StressRatio_s = (stt%threshold_stress_trans(j,of)/tau)**prm%s(j)
|
||||
|
||||
isFCCtrans: if (lattice_structure(ph) == LATTICE_FCC_ID) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||
if (tau < tau_r_trans(j,instance)) then
|
||||
Ndot0_trans=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
Ndot0_trans=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||||
abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
|
||||
(prm%L0_trans*prm%burgers_slip(j))*&
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*(tau_r_trans(j,instance)-tau)))
|
||||
else
|
||||
|
@ -1343,19 +1333,19 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
else isFCCtrans
|
||||
Ndot0_trans=prm%Ndot0_trans(j)
|
||||
endif isFCCtrans
|
||||
gdot_trans = (1.0_pReal-sumf-sumftr)* state(instance)%martensiteVolume(j,of) &
|
||||
|
||||
gdot_trans = (1.0_pReal-sumf-sumftr)* stt%martensiteVolume(j,of) &
|
||||
* Ndot0_trans*exp(-StressRatio_s)
|
||||
dgdot_dtau = ((gdot_trans*prm%s(j))/tau)*StressRatio_s
|
||||
else significantTransStress
|
||||
gdot_trans = 0.0_pReal
|
||||
dgdot_dtau = 0.0_pReal
|
||||
endif significantTransStress
|
||||
|
||||
Lp = Lp + gdot_trans*prm%Schmid_trans(1:3,1:3,j)
|
||||
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) &
|
||||
+ dgdot_dtau * prm%Schmid_trans(k,l,j)* prm%Schmid_trans(m,n,j)
|
||||
enddo transSystems
|
||||
endif significantTransStress
|
||||
|
||||
enddo transConstribution
|
||||
|
||||
end associate
|
||||
|
||||
dLp_dTstar99 = math_Plain3333to99(dLp_dS)
|
||||
|
@ -1409,59 +1399,64 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
real(pReal), dimension(3,3) :: &
|
||||
S !< Second-Piola Kirchhoff stress
|
||||
type(tParameters) :: prm
|
||||
type(tDislotwinState) :: stt, dst
|
||||
|
||||
!* Shortened notation
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
ph = phaseAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(ph)
|
||||
ph = material_phase(ipc,ip,el)
|
||||
|
||||
S = math_Mandel6to33(Tstar_v)
|
||||
|
||||
associate(prm => param(instance))
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
|
||||
plasticState(ph)%dotState(:,of) = 0.0_pReal
|
||||
|
||||
!* Total transformed volume fraction
|
||||
sumftr = sum(state(instance)%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
|
||||
sum(state(instance)%strainTransFraction(1_pInt:prm%totalNtrans,of))
|
||||
associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))), &
|
||||
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))), &
|
||||
dst => dotstate(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||
|
||||
sumf = sum(stt%twinFraction(1_pInt:prm%totalNtwin,of))
|
||||
sumftr = sum(stt%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
|
||||
sum(stt%strainTransFraction(1_pInt:prm%totalNtrans,of))
|
||||
|
||||
slipState: do j = 1_pInt, prm%totalNslip
|
||||
|
||||
slipSystems: do j = 1_pInt, prm%totalNslip
|
||||
tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
significantSlipStress1: if((abs(tau)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
stressRatio =((abs(tau)- state(instance)%threshold_stress_slip(j,of))/&
|
||||
|
||||
significantSlipStress1: if((abs(tau)-stt%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
stressRatio =((abs(tau)- stt%threshold_stress_slip(j,of))/&
|
||||
(prm%SolidSolutionStrength+prm%tau_peierls(j)))
|
||||
StressRatio_p = stressRatio** prm%p(j)
|
||||
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
|
||||
gdot_slip(j) = state(instance)%rhoEdge(j,of)*prm%burgers_slip(j)*prm%v0(j) &
|
||||
gdot_slip(j) = stt%rhoEdge(j,of)*prm%burgers_slip(j)*prm%v0(j) &
|
||||
* sign(exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**prm%q(j)),tau)
|
||||
else significantSlipStress1
|
||||
gdot_slip(j) = 0.0_pReal
|
||||
endif significantSlipStress1
|
||||
DotRhoMultiplication = abs(gdot_slip(j))/(prm%burgers_slip(j)*state(instance)%mfp_slip(j,of))
|
||||
|
||||
DotRhoMultiplication = abs(gdot_slip(j))/(prm%burgers_slip(j)*stt%mfp_slip(j,of))
|
||||
EdgeDipMinDistance = prm%CEdgeDipMinDistance*prm%burgers_slip(j)
|
||||
|
||||
significantSlipStress2: if (dEq0(tau)) then
|
||||
DotRhoDipFormation = 0.0_pReal
|
||||
else significantSlipStress2
|
||||
EdgeDipDistance = (3.0_pReal*lattice_mu(ph)*prm%burgers_slip(j))/&
|
||||
(16.0_pReal*PI*abs(tau))
|
||||
if (EdgeDipDistance>state(instance)%mfp_slip(j,of)) EdgeDipDistance=state(instance)%mfp_slip(j,of)
|
||||
if (EdgeDipDistance>stt%mfp_slip(j,of)) EdgeDipDistance=stt%mfp_slip(j,of)
|
||||
if (EdgeDipDistance<EdgeDipMinDistance) EdgeDipDistance=EdgeDipMinDistance
|
||||
DotRhoDipFormation = ((2.0_pReal*(EdgeDipDistance-EdgeDipMinDistance))/prm%burgers_slip(j))*&
|
||||
state(instance)%rhoEdge(j,of)*abs(gdot_slip(j))*prm%dipoleFormationFactor
|
||||
stt%rhoEdge(j,of)*abs(gdot_slip(j))*prm%dipoleFormationFactor
|
||||
endif significantSlipStress2
|
||||
|
||||
!* Spontaneous annihilation of 2 single edge dislocations
|
||||
DotRhoEdgeEdgeAnnihilation = ((2.0_pReal*EdgeDipMinDistance)/prm%burgers_slip(j))*&
|
||||
state(instance)%rhoEdge(j,of)*abs(gdot_slip(j))
|
||||
stt%rhoEdge(j,of)*abs(gdot_slip(j))
|
||||
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent
|
||||
DotRhoEdgeDipAnnihilation = ((2.0_pReal*EdgeDipMinDistance)/prm%burgers_slip(j)) &
|
||||
* state(instance)%rhoEdgeDip(j,of)*abs(gdot_slip(j))
|
||||
* stt%rhoEdgeDip(j,of)*abs(gdot_slip(j))
|
||||
|
||||
!* Dislocation dipole climb
|
||||
AtomicVolume = prm%CAtomicVolume*prm%burgers_slip(j)**(3.0_pReal) ! no need to calculate this over and over again
|
||||
VacancyDiffusion = prm%D0*exp(-prm%Qsd/(kB*Temperature))
|
||||
|
||||
if (dEq0(tau)) then
|
||||
DotRhoEdgeDipClimb = 0.0_pReal
|
||||
else
|
||||
|
@ -1470,25 +1465,27 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
else
|
||||
ClimbVelocity = 3.0_pReal*lattice_mu(ph)*VacancyDiffusion*AtomicVolume/ &
|
||||
(2.0_pReal*pi*kB*Temperature*(EdgeDipDistance+EdgeDipMinDistance))
|
||||
DotRhoEdgeDipClimb = 4.0_pReal*ClimbVelocity*state(instance)%rhoEdgeDip(j,of)/ &
|
||||
DotRhoEdgeDipClimb = 4.0_pReal*ClimbVelocity*stt%rhoEdgeDip(j,of)/ &
|
||||
(EdgeDipDistance-EdgeDipMinDistance)
|
||||
endif
|
||||
endif
|
||||
dotState(instance)%rhoEdge(j,of) = DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
||||
dotState(instance)%rhoEdgeDip(j,of) = DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
||||
dotState(instance)%accshear_slip(j,of) = abs(gdot_slip(j))
|
||||
enddo slipSystems
|
||||
dst%rhoEdge(j,of) = DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
||||
dst%rhoEdgeDip(j,of) = DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
||||
dst%accshear_slip(j,of) = abs(gdot_slip(j))
|
||||
enddo slipState
|
||||
|
||||
twinState: do j = 1_pInt, prm%totalNtwin
|
||||
|
||||
twinSystems: do j = 1_pInt, prm%totalNtwin
|
||||
tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
|
||||
significantTwinStress: if (tau > tol_math_check) then
|
||||
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau)**prm%r(j)
|
||||
StressRatio_r = (stt%threshold_stress_twin(j,of)/tau)**prm%r(j)
|
||||
isFCCtwin: if (lattice_structure(ph) == LATTICE_FCC_ID) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||
if (tau < tau_r_twin(j,instance)) then
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
|
||||
(prm%L0_twin*prm%burgers_slip(j))*(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||||
(tau_r_twin(j,instance)-tau)))
|
||||
else
|
||||
|
@ -1497,22 +1494,25 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
else isFCCtwin
|
||||
Ndot0_twin=prm%Ndot0_twin(j)
|
||||
endif isFCCtwin
|
||||
dotState(instance)%twinFraction(j,of) = (1.0_pReal-sumf-sumftr)*&
|
||||
state(instance)%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||||
dotState(instance)%accshear_twin(j,of) = dotState(instance)%twinFraction(j,of) * prm%shear_twin(j)
|
||||
dst%twinFraction(j,of) = (1.0_pReal-sumf-sumftr)*&
|
||||
stt%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||||
dst%accshear_twin(j,of) = dst%twinFraction(j,of) * prm%shear_twin(j)
|
||||
endif significantTwinStress
|
||||
enddo twinSystems
|
||||
|
||||
transSystems: do j = 1_pInt, prm%totalNtrans
|
||||
enddo twinState
|
||||
|
||||
transState: do j = 1_pInt, prm%totalNtrans
|
||||
|
||||
tau = math_mul33xx33(S,prm%Schmid_trans(1:3,1:3,j))
|
||||
|
||||
significantTransStress: if (tau > tol_math_check) then
|
||||
StressRatio_s = (state(instance)%threshold_stress_trans(j,of)/tau)**prm%s(j)
|
||||
StressRatio_s = (stt%threshold_stress_trans(j,of)/tau)**prm%s(j)
|
||||
isFCCtrans: if (lattice_structure(ph) == LATTICE_FCC_ID) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||
if (tau < tau_r_trans(j,instance)) then
|
||||
Ndot0_trans=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
Ndot0_trans=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
|
||||
(prm%L0_trans*prm%burgers_slip(j))*(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||||
(tau_r_trans(j,instance)-tau)))
|
||||
else
|
||||
|
@ -1521,13 +1521,14 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
else isFCCtrans
|
||||
Ndot0_trans=prm%Ndot0_trans(j)
|
||||
endif isFCCtrans
|
||||
dotState(instance)%strainTransFraction(j,of) = (1.0_pReal-sumf-sumftr)*&
|
||||
state(instance)%martensiteVolume(j,of)*Ndot0_trans*exp(-StressRatio_s)
|
||||
dst%strainTransFraction(j,of) = (1.0_pReal-sumf-sumftr)*&
|
||||
stt%martensiteVolume(j,of)*Ndot0_trans*exp(-StressRatio_s)
|
||||
!* Dotstate for accumulated shear due to transformation
|
||||
!dotState(instance)%accshear_trans(j,of) = dotState(instance)%strainTransFraction(j,of) * &
|
||||
!dst%accshear_trans(j,of) = dst%strainTransFraction(j,of) * &
|
||||
! lattice_sheartrans(index_myfamily+i,ph)
|
||||
endif significantTransStress
|
||||
enddo transSystems
|
||||
|
||||
enddo transState
|
||||
|
||||
end associate
|
||||
end subroutine plastic_dislotwin_dotState
|
||||
|
@ -1542,25 +1543,17 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
tol_math_check, &
|
||||
dEq0
|
||||
use math, only: &
|
||||
pi, &
|
||||
PI, &
|
||||
math_mul33xx33, &
|
||||
math_Mandel6to33, &
|
||||
math_eigenValuesSym33, &
|
||||
math_eigenValuesVectorsSym33
|
||||
math_Mandel6to33
|
||||
use material, only: &
|
||||
material_phase, &
|
||||
plasticState, &
|
||||
phase_plasticityInstance,&
|
||||
phaseAt, phasememberAt
|
||||
use lattice, only: &
|
||||
lattice_Sslip, &
|
||||
lattice_Stwin, &
|
||||
lattice_NslipSystem, &
|
||||
lattice_NtwinSystem, &
|
||||
lattice_shearTwin, &
|
||||
lattice_mu, &
|
||||
lattice_structure, &
|
||||
lattice_fcc_twinNucleationSlipPair, &
|
||||
LATTICE_fcc_ID
|
||||
|
||||
implicit none
|
||||
|
@ -1577,7 +1570,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
postResults
|
||||
integer(pInt) :: &
|
||||
instance,&
|
||||
f,o,i,c,j,index_myFamily,&
|
||||
o,c,j,&
|
||||
s1,s2, &
|
||||
ph, &
|
||||
of
|
||||
|
@ -1585,12 +1578,11 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
stressRatio
|
||||
real(preal), dimension(plasticState(material_phase(ipc,ip,el))%Nslip) :: &
|
||||
gdot_slip
|
||||
real(pReal), dimension(3,3) :: eigVectors
|
||||
real(pReal), dimension (3) :: eigValues
|
||||
|
||||
real(pReal), dimension(3,3) :: &
|
||||
S !< Second-Piola Kirchhoff stress
|
||||
type(tParameters) :: prm
|
||||
type(tDislotwinState) :: stt
|
||||
|
||||
!* Shortened notation
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
|
@ -1599,9 +1591,10 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
|
||||
S = math_Mandel6to33(Tstar_v)
|
||||
|
||||
associate(prm => param(instance))
|
||||
associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))), &
|
||||
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(state(instance)%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
|
||||
sumf = sum(stt%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
|
||||
|
||||
!* Required output
|
||||
c = 0_pInt
|
||||
|
@ -1610,24 +1603,19 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
select case(prm%outputID(o))
|
||||
|
||||
case (edge_density_ID)
|
||||
postResults(c+1_pInt:c+prm%totalNslip) = state(instance)%rhoEdge(1_pInt:prm%totalNslip,of)
|
||||
postResults(c+1_pInt:c+prm%totalNslip) = stt%rhoEdge(1_pInt:prm%totalNslip,of)
|
||||
c = c + prm%totalNslip
|
||||
case (dipole_density_ID)
|
||||
postResults(c+1_pInt:c+prm%totalNslip) = state(instance)%rhoEdgeDip(1_pInt:prm%totalNslip,of)
|
||||
postResults(c+1_pInt:c+prm%totalNslip) = stt%rhoEdgeDip(1_pInt:prm%totalNslip,of)
|
||||
c = c + prm%totalNslip
|
||||
case (shear_rate_slip_ID)
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,size(prm%Nslip,1) ! loop over all slip families
|
||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
do i = 1_pInt,prm%Nslip(f) ! process each (active) slip system in family
|
||||
j = j + 1_pInt ! could be taken from state by now!
|
||||
|
||||
do j = 1_pInt, prm%totalNslip
|
||||
!* Resolved shear stress on slip system
|
||||
tau = math_mul33xx33(S,lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph))
|
||||
tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
!* Stress ratios
|
||||
if((abs(tau)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
if((abs(tau)-stt%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
stressRatio = ((abs(tau)-state(ph)%threshold_stress_slip(j,of))/&
|
||||
stressRatio = ((abs(tau)-stt%threshold_stress_slip(j,of))/&
|
||||
(prm%SolidSolutionStrength+&
|
||||
prm%tau_peierls(j)))
|
||||
StressRatio_p = stressRatio** prm%p(j)
|
||||
|
@ -1635,7 +1623,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
!* Boltzmann ratio
|
||||
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = state(instance)%rhoEdge(j,of)*prm%burgers_slip(j)* prm%v0(j)
|
||||
DotGamma0 = stt%rhoEdge(j,of)*prm%burgers_slip(j)* prm%v0(j)
|
||||
|
||||
!* Shear rates due to slip
|
||||
postResults(c+j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**&
|
||||
|
@ -1644,44 +1632,34 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
postResults(c+j) = 0.0_pReal
|
||||
endif
|
||||
|
||||
enddo ; enddo
|
||||
enddo
|
||||
c = c + prm%totalNslip
|
||||
case (accumulated_shear_slip_ID)
|
||||
postResults(c+1_pInt:c+prm%totalNslip) = &
|
||||
state(instance)%accshear_slip(1_pInt:prm%totalNslip,of)
|
||||
stt%accshear_slip(1_pInt:prm%totalNslip,of)
|
||||
c = c + prm%totalNslip
|
||||
case (mfp_slip_ID)
|
||||
postResults(c+1_pInt:c+prm%totalNslip) =&
|
||||
state(instance)%mfp_slip(1_pInt:prm%totalNslip,of)
|
||||
stt%mfp_slip(1_pInt:prm%totalNslip,of)
|
||||
c = c + prm%totalNslip
|
||||
case (resolved_stress_slip_ID)
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,size(prm%Nslip,1) ! loop over all slip families
|
||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
do i = 1_pInt,prm%Nslip(f) ! process each (active) slip system in family
|
||||
j = j + 1_pInt
|
||||
postResults(c+j) =&
|
||||
math_mul33xx33(S,lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph))
|
||||
enddo; enddo
|
||||
do j = 1_pInt, prm%totalNslip
|
||||
postResults(c+j) = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
enddo
|
||||
c = c + prm%totalNslip
|
||||
case (threshold_stress_slip_ID)
|
||||
postResults(c+1_pInt:c+prm%totalNslip) = &
|
||||
state(instance)%threshold_stress_slip(1_pInt:prm%totalNslip,of)
|
||||
stt%threshold_stress_slip(1_pInt:prm%totalNslip,of)
|
||||
c = c + prm%totalNslip
|
||||
case (edge_dipole_distance_ID)
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,size(prm%Nslip,1) ! loop over all slip families
|
||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
do i = 1_pInt,prm%Nslip(f) ! process each (active) slip system in family
|
||||
j = j + 1_pInt
|
||||
do j = 1_pInt, prm%totalNslip
|
||||
postResults(c+j) = &
|
||||
(3.0_pReal*lattice_mu(ph)*prm%burgers_slip(j))/&
|
||||
(16.0_pReal*pi*abs(math_mul33xx33(S,lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph))))
|
||||
postResults(c+j)=min(postResults(c+j),&
|
||||
state(instance)%mfp_slip(j,of))
|
||||
(16.0_pReal*PI*abs(math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))))
|
||||
postResults(c+j)=min(postResults(c+j),stt%mfp_slip(j,of))
|
||||
! postResults(c+j)=max(postResults(c+j),&
|
||||
! plasticState(ph)%state(4*ns+2*nt+2*nr+j, of))
|
||||
enddo; enddo
|
||||
enddo
|
||||
c = c + prm%totalNslip
|
||||
case (resolved_stress_shearband_ID)
|
||||
do j = 1_pInt,6_pInt ! loop over all shearband families
|
||||
|
@ -1707,33 +1685,26 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
!* Initial shear rates
|
||||
DotGamma0 = prm%sbVelocity
|
||||
! Shear rate due to shear band
|
||||
postResults(c+j) = &
|
||||
DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**prm%qShearBand)*&
|
||||
postResults(c+j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**prm%qShearBand)*&
|
||||
sign(1.0_pReal,tau)
|
||||
enddo
|
||||
c = c + 6_pInt
|
||||
case (twin_fraction_ID)
|
||||
postResults(c+1_pInt:c+prm%totalNtwin) = state(instance)%twinFraction(1_pInt:prm%totalNtwin,of)
|
||||
postResults(c+1_pInt:c+prm%totalNtwin) = stt%twinFraction(1_pInt:prm%totalNtwin,of)
|
||||
c = c + prm%totalNtwin
|
||||
case (shear_rate_twin_ID)
|
||||
if (prm%totalNtwin > 0_pInt) then
|
||||
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,size(prm%Nslip,1)
|
||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
do i = 1_pInt,prm%Nslip(f) ! process each (active) slip system in family
|
||||
j = j + 1_pInt
|
||||
do j = 1_pInt, prm%totalNslip
|
||||
|
||||
!* Resolved shear stress on slip system
|
||||
tau = math_mul33xx33(S,lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph))
|
||||
tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
!* Stress ratios
|
||||
if((abs(tau)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
if((abs(tau)-stt%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/&
|
||||
StressRatio_p = ((abs(tau)-stt%threshold_stress_slip(j,of))/&
|
||||
(prm%SolidSolutionStrength+&
|
||||
prm%tau_peierls(j)))&
|
||||
**prm%p(j)
|
||||
StressRatio_pminus1 = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/&
|
||||
StressRatio_pminus1 = ((abs(tau)-stt%threshold_stress_slip(j,of))/&
|
||||
(prm%SolidSolutionStrength+&
|
||||
prm%tau_peierls(j)))&
|
||||
**(prm%p(j)-1.0_pReal)
|
||||
|
@ -1741,7 +1712,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
state(instance)%rhoEdge(j,of)*prm%burgers_slip(j)* &
|
||||
stt%rhoEdge(j,of)*prm%burgers_slip(j)* &
|
||||
prm%v0(j)
|
||||
|
||||
!* Shear rates due to slip
|
||||
|
@ -1750,26 +1721,20 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
else
|
||||
gdot_slip(j) = 0.0_pReal
|
||||
endif
|
||||
enddo;enddo
|
||||
enddo
|
||||
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,size(prm%Ntwin,1)
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
do i = 1,prm%Ntwin(f) ! process each (active) twin system in family
|
||||
j = j + 1_pInt
|
||||
do j = 1_pInt, prm%totalNtwin
|
||||
|
||||
tau = math_mul33xx33(S,lattice_Stwin(1:3,1:3,index_myFamily+i,ph))
|
||||
tau = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
|
||||
|
||||
|
||||
!* Shear rates due to twin
|
||||
if ( tau > 0.0_pReal ) then
|
||||
select case(lattice_structure(ph))
|
||||
case (LATTICE_fcc_ID)
|
||||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||
if (tau < tau_r_twin(j,instance)) then
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
|
||||
(prm%L0_twin*&
|
||||
prm%burgers_slip(j))*&
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||||
|
@ -1780,52 +1745,39 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
case default
|
||||
Ndot0_twin=prm%Ndot0_twin(j)
|
||||
end select
|
||||
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau) &
|
||||
StressRatio_r = (stt%threshold_stress_twin(j,of)/tau) &
|
||||
**prm%r(j)
|
||||
postResults(c+j) = &
|
||||
(prm%MaxTwinFraction-sumf)*lattice_shearTwin(index_myFamily+i,ph)*&
|
||||
state(instance)%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||||
postResults(c+j) = (prm%MaxTwinFraction-sumf)*prm%shear_twin(j) * &
|
||||
stt%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||||
endif
|
||||
|
||||
enddo ; enddo
|
||||
endif
|
||||
enddo
|
||||
c = c + prm%totalNtwin
|
||||
case (accumulated_shear_twin_ID)
|
||||
postResults(c+1_pInt:c+prm%totalNtwin) = state(instance)%accshear_twin(1_pInt:prm%totalNtwin,of)
|
||||
postResults(c+1_pInt:c+prm%totalNtwin) = stt%accshear_twin(1_pInt:prm%totalNtwin,of)
|
||||
c = c + prm%totalNtwin
|
||||
case (mfp_twin_ID)
|
||||
postResults(c+1_pInt:c+prm%totalNtwin) = state(instance)%mfp_twin(1_pInt:prm%totalNtwin,of)
|
||||
postResults(c+1_pInt:c+prm%totalNtwin) = stt%mfp_twin(1_pInt:prm%totalNtwin,of)
|
||||
c = c + prm%totalNtwin
|
||||
case (resolved_stress_twin_ID)
|
||||
if (prm%totalNtwin > 0_pInt) then
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,size(prm%Ntwin,1)
|
||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
do i = 1_pInt,prm%Ntwin(f) ! process each (active) slip system in family
|
||||
j = j + 1_pInt
|
||||
postResults(c+j) = math_mul33xx33(S,lattice_Stwin(1:3,1:3,index_myFamily+i,ph))
|
||||
enddo; enddo
|
||||
endif
|
||||
do j = 1_pInt, prm%totalNtwin
|
||||
postResults(c+j) = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
|
||||
enddo
|
||||
c = c + prm%totalNtwin
|
||||
case (threshold_stress_twin_ID)
|
||||
postResults(c+1_pInt:c+prm%totalNtwin) = state(instance)%threshold_stress_twin(1_pInt:prm%totalNtwin,of)
|
||||
postResults(c+1_pInt:c+prm%totalNtwin) = stt%threshold_stress_twin(1_pInt:prm%totalNtwin,of)
|
||||
c = c + prm%totalNtwin
|
||||
case (stress_exponent_ID)
|
||||
j = 0_pInt
|
||||
do f = 1_pInt,size(prm%Nslip,1)
|
||||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||||
do i = 1_pInt,prm%Nslip(f) ! process each (active) slip system in family
|
||||
j = j + 1_pInt
|
||||
do j = 1_pInt, prm%totalNslip
|
||||
|
||||
!* Resolved shear stress on slip system
|
||||
tau = math_mul33xx33(S,lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph))
|
||||
if((abs(tau)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||
if((abs(tau)-stt%threshold_stress_slip(j,of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/&
|
||||
StressRatio_p = ((abs(tau)-stt%threshold_stress_slip(j,of))/&
|
||||
(prm%SolidSolutionStrength+&
|
||||
prm%tau_peierls(j)))&
|
||||
**prm%p(j)
|
||||
StressRatio_pminus1 = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/&
|
||||
StressRatio_pminus1 = ((abs(tau)-stt%threshold_stress_slip(j,of))/&
|
||||
(prm%SolidSolutionStrength+&
|
||||
prm%tau_peierls(j)))&
|
||||
**(prm%p(j)-1.0_pReal)
|
||||
|
@ -1833,7 +1785,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
|
||||
!* Initial shear rates
|
||||
DotGamma0 = &
|
||||
state(instance)%rhoEdge(j,of)*prm%burgers_slip(j)* &
|
||||
stt%rhoEdge(j,of)*prm%burgers_slip(j)* &
|
||||
prm%v0(j)
|
||||
|
||||
!* Shear rates due to slip
|
||||
|
@ -1854,29 +1806,22 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
endif
|
||||
|
||||
!* Stress exponent
|
||||
postResults(c+j) = &
|
||||
merge(0.0_pReal,(tau/gdot_slip(j))*dgdot_dtauslip,dEq0(gdot_slip(j)))
|
||||
enddo ; enddo
|
||||
postResults(c+j) = merge(0.0_pReal,(tau/gdot_slip(j))*dgdot_dtauslip,dEq0(gdot_slip(j)))
|
||||
enddo
|
||||
c = c + prm%totalNslip
|
||||
case (sb_eigenvalues_ID)
|
||||
postResults(c+1_pInt:c+3_pInt) = math_eigenvaluesSym33(S)
|
||||
c = c + 3_pInt
|
||||
case (sb_eigenvectors_ID)
|
||||
call math_eigenValuesVectorsSym33(S,eigValues,eigVectors)
|
||||
postResults(c+1_pInt:c+9_pInt) = reshape(eigVectors,[9])
|
||||
c = c + 9_pInt
|
||||
|
||||
case (stress_trans_fraction_ID)
|
||||
postResults(c+1_pInt:c+prm%totalNtrans) = &
|
||||
state(instance)%stressTransFraction(1_pInt:prm%totalNtrans,of)
|
||||
stt%stressTransFraction(1_pInt:prm%totalNtrans,of)
|
||||
c = c + prm%totalNtrans
|
||||
case (strain_trans_fraction_ID)
|
||||
postResults(c+1_pInt:c+prm%totalNtrans) = &
|
||||
state(instance)%strainTransFraction(1_pInt:prm%totalNtrans,of)
|
||||
stt%strainTransFraction(1_pInt:prm%totalNtrans,of)
|
||||
c = c + prm%totalNtrans
|
||||
case (trans_fraction_ID)
|
||||
postResults(c+1_pInt:c+prm%totalNtrans) = &
|
||||
state(instance)%stressTransFraction(1_pInt:prm%totalNtrans,of) + &
|
||||
state(instance)%strainTransFraction(1_pInt:prm%totalNtrans,of)
|
||||
stt%stressTransFraction(1_pInt:prm%totalNtrans,of) + &
|
||||
stt%strainTransFraction(1_pInt:prm%totalNtrans,of)
|
||||
c = c + prm%totalNtrans
|
||||
end select
|
||||
enddo
|
||||
|
|
Loading…
Reference in New Issue