cleaning + renaming

This commit is contained in:
Martin Diehl 2018-09-01 10:45:34 +02:00
parent 0b94b8085d
commit e9f738fade
1 changed files with 245 additions and 300 deletions

View File

@ -123,7 +123,8 @@ module plastic_dislotwin
interaction_TwinTwin, & !< coefficients for twin-twin interaction for each interaction type and instance interaction_TwinTwin, & !< coefficients for twin-twin interaction for each interaction type and instance
interaction_SlipTrans, & !< coefficients for slip-trans interaction for each interaction type and instance interaction_SlipTrans, & !< coefficients for slip-trans interaction for each interaction type and instance
interaction_TransSlip, & !< coefficients for trans-slip interaction for each interaction type and instance interaction_TransSlip, & !< coefficients for trans-slip interaction for each interaction type and instance
interaction_TransTrans, & !< coefficients for trans-trans interaction for each interaction type and instance interaction_TransTrans !< coefficients for trans-trans interaction for each interaction type and instance
integer(pInt), dimension(:,:), allocatable, private :: &
fcc_twinNucleationSlipPair fcc_twinNucleationSlipPair
real(pReal), dimension(:,:,:), allocatable :: & real(pReal), dimension(:,:,:), allocatable :: &
Schmid_trans, & Schmid_trans, &
@ -482,12 +483,6 @@ subroutine plastic_dislotwin_init(fileUnit)
case ('shear_rate_shearband','shearrate_shearband') case ('shear_rate_shearband','shearrate_shearband')
outputID = shear_rate_shearband_ID outputID = shear_rate_shearband_ID
outputSize = 6_pInt outputSize = 6_pInt
case ('sb_eigenvalues')
outputID = sb_eigenvalues_ID
outputSize = 3_pInt
case ('sb_eigenvectors')
outputID = sb_eigenvectors_ID
outputSize = 3_pInt
case ('stress_trans_fraction') case ('stress_trans_fraction')
outputID = stress_trans_fraction_ID outputID = stress_trans_fraction_ID
@ -679,7 +674,7 @@ subroutine plastic_dislotwin_init(fileUnit)
allocate(Ctwin3333(3,3,3,3,prm%totalNtwin), source=0.0_pReal) allocate(Ctwin3333(3,3,3,3,prm%totalNtwin), source=0.0_pReal)
allocate(prm%Schmid_twin(3,3,prm%totalNtwin),source = 0.0_pReal) allocate(prm%Schmid_twin(3,3,prm%totalNtwin),source = 0.0_pReal)
if (lattice_structure(p) == LATTICE_fcc_ID) & if (lattice_structure(p) == LATTICE_fcc_ID) &
allocate(prm%fcc_twinNucleationSlipPair(2,prm%totalNtwin),source = 0.0_pReal) allocate(prm%fcc_twinNucleationSlipPair(2,prm%totalNtwin),source = 0_pInt)
allocate(prm%shear_twin(prm%totalNtwin),source = 0.0_pReal) allocate(prm%shear_twin(prm%totalNtwin),source = 0.0_pReal)
i = 0_pInt i = 0_pInt
twinFamiliesLoop: do f = 1_pInt, size(prm%Ntwin,1) twinFamiliesLoop: do f = 1_pInt, size(prm%Ntwin,1)
@ -962,7 +957,7 @@ function plastic_dislotwin_homogenizedC(ipc,ip,el)
ip, & !< integration point ip, & !< integration point
el !< element el !< element
type(tParameters) :: prm type(tParameters) :: prm
type(tDislotwinState) :: ste type(tDislotwinState) :: stt
integer(pInt) :: instance,i, & integer(pInt) :: instance,i, &
ph, & ph, &
@ -973,25 +968,25 @@ function plastic_dislotwin_homogenizedC(ipc,ip,el)
of = phasememberAt(ipc,ip,el) of = phasememberAt(ipc,ip,el)
ph = phaseAt(ipc,ip,el) ph = phaseAt(ipc,ip,el)
instance = phase_plasticityInstance(ph) instance = phase_plasticityInstance(ph)
associate( prm => param(instance), ste =>state(instance)) associate( prm => param(instance), stt =>state(instance))
!* Total twin volume fraction !* Total twin volume fraction
sumf = sum(ste%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0 sumf = sum(stt%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
!* Total transformed volume fraction !* Total transformed volume fraction
sumftr = sum(ste%stressTransFraction(1_pInt:prm%totalNtrans,of)) + & sumftr = sum(stt%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
sum(ste%strainTransFraction(1_pInt:prm%totalNtrans,of)) sum(stt%strainTransFraction(1_pInt:prm%totalNtrans,of))
!* Homogenized elasticity matrix !* Homogenized elasticity matrix
plastic_dislotwin_homogenizedC = (1.0_pReal-sumf-sumftr)*lattice_C66(1:6,1:6,ph) plastic_dislotwin_homogenizedC = (1.0_pReal-sumf-sumftr)*lattice_C66(1:6,1:6,ph)
do i=1_pInt,prm%totalNtwin do i=1_pInt,prm%totalNtwin
plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC & plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC &
+ ste%twinFraction(i,of)*prm%Ctwin66(1:6,1:6,i) + stt%twinFraction(i,of)*prm%Ctwin66(1:6,1:6,i)
enddo enddo
do i=1_pInt,prm%totalNtrans do i=1_pInt,prm%totalNtrans
plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC & plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC &
+ (ste%stressTransFraction(i,of) + ste%strainTransFraction(i,of))*& + (stt%stressTransFraction(i,of) + stt%strainTransFraction(i,of))*&
prm%Ctrans66(1:6,1:6,i) prm%Ctrans66(1:6,1:6,i)
enddo enddo
end associate end associate
@ -1032,94 +1027,90 @@ subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
fOverStacksize, & fOverStacksize, &
ftransOverLamellarSize ftransOverLamellarSize
type(tParameters):: prm type(tParameters) :: prm !< parameters of present instance
type(tDislotwinState) :: ste type(tDislotwinState) :: stt !< state of present instance
!* Shortened notation
of = phasememberAt(ipc,ip,el) of = phasememberAt(ipc,ip,el)
ph = phaseAt(ipc,ip,el) ph = material_phase(ipc,ip,el)
instance = phase_plasticityInstance(ph)
associate(prm => param(instance), & associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))),&
ste => state(instance)) stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))))
sumf = sum(ste%twinFraction(1:prm%totalNtwin,of)) sumf = sum(stt%twinFraction(1:prm%totalNtwin,of))
sumftr = sum(stt%stressTransFraction(1:prm%totalNtrans,of)) &
sumftr = sum(ste%stressTransFraction(1:prm%totalNtrans,of)) + & + sum(stt%strainTransFraction(1:prm%totalNtrans,of))
sum(ste%strainTransFraction(1:prm%totalNtrans,of))
sfe = prm%SFE_0K + prm%dSFE_dT * Temperature sfe = prm%SFE_0K + prm%dSFE_dT * Temperature
!* rescaled volume fraction for topology !* rescaled volume fraction for topology
fOverStacksize = ste%twinFraction(1_pInt:prm%totalNtwin,of)/prm%twinsize fOverStacksize = stt%twinFraction(1_pInt:prm%totalNtwin,of)/prm%twinsize
ftransOverLamellarSize = sumftr /prm%lamellarsizePerTransSystem ftransOverLamellarSize = sumftr /prm%lamellarsizePerTransSystem
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation !* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
forall (s = 1_pInt:prm%totalNslip) & forall (s = 1_pInt:prm%totalNslip) &
ste%invLambdaSlip(s,of) = & stt%invLambdaSlip(s,of) = &
sqrt(dot_product((ste%rhoEdge(1_pInt:prm%totalNslip,of)+ste%rhoEdgeDip(1_pInt:prm%totalNslip,of)),& sqrt(dot_product((stt%rhoEdge(1_pInt:prm%totalNslip,of)+stt%rhoEdgeDip(1_pInt:prm%totalNslip,of)),&
forestProjectionEdge(1:prm%totalNslip,s,instance)))/prm%CLambdaSlipPerSlipSystem(s) forestProjectionEdge(1:prm%totalNslip,s,instance)))/prm%CLambdaSlipPerSlipSystem(s)
!* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation !* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
!$OMP CRITICAL (evilmatmul) !$OMP CRITICAL (evilmatmul)
if (prm%totalNtwin > 0_pInt .and. prm%totalNslip > 0_pInt) & if (prm%totalNtwin > 0_pInt .and. prm%totalNslip > 0_pInt) &
ste%invLambdaSlipTwin(1_pInt:prm%totalNslip,of) = & stt%invLambdaSlipTwin(1_pInt:prm%totalNslip,of) = &
matmul(prm%interaction_SlipTwin,fOverStacksize)/(1.0_pReal-sumf) matmul(prm%interaction_SlipTwin,fOverStacksize)/(1.0_pReal-sumf)
!* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin !* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
!ToDo: needed? if (prm%totalNtwin > 0_pInt) & !ToDo: needed? if (prm%totalNtwin > 0_pInt) &
ste%invLambdaTwin(1_pInt:prm%totalNtwin,of) = & stt%invLambdaTwin(1_pInt:prm%totalNtwin,of) = &
matmul(prm%interaction_TwinTwin,fOverStacksize)/(1.0_pReal-sumf) matmul(prm%interaction_TwinTwin,fOverStacksize)/(1.0_pReal-sumf)
!* 1/mean free distance between 2 martensite lamellar from different systems seen by a moving dislocation !* 1/mean free distance between 2 martensite lamellar from different systems seen by a moving dislocation
if (prm%totalNtrans > 0_pInt .and. prm%totalNslip > 0_pInt) & if (prm%totalNtrans > 0_pInt .and. prm%totalNslip > 0_pInt) &
ste%invLambdaSlipTrans(1_pInt:prm%totalNslip,of) = & stt%invLambdaSlipTrans(1_pInt:prm%totalNslip,of) = &
matmul(prm%interaction_SlipTrans,ftransOverLamellarSize)/(1.0_pReal-sumftr) matmul(prm%interaction_SlipTrans,ftransOverLamellarSize)/(1.0_pReal-sumftr)
!* 1/mean free distance between 2 martensite stacks from different systems seen by a growing martensite (1/lambda_trans) !* 1/mean free distance between 2 martensite stacks from different systems seen by a growing martensite (1/lambda_trans)
!ToDo: needed? if (prm%totalNtrans > 0_pInt) & !ToDo: needed? if (prm%totalNtrans > 0_pInt) &
ste%invLambdaTrans(1_pInt:prm%totalNtrans,of) = & stt%invLambdaTrans(1_pInt:prm%totalNtrans,of) = &
matmul(prm%interaction_TransTrans,ftransOverLamellarSize)/(1.0_pReal-sumftr) matmul(prm%interaction_TransTrans,ftransOverLamellarSize)/(1.0_pReal-sumftr)
!$OMP END CRITICAL (evilmatmul) !$OMP END CRITICAL (evilmatmul)
!* mean free path between 2 obstacles seen by a moving dislocation !* mean free path between 2 obstacles seen by a moving dislocation
do s = 1_pInt,prm%totalNslip do s = 1_pInt,prm%totalNslip
if ((prm%totalNtwin > 0_pInt) .or. (prm%totalNtrans > 0_pInt)) then ! ToDo: This is too simplified if ((prm%totalNtwin > 0_pInt) .or. (prm%totalNtrans > 0_pInt)) then ! ToDo: This is too simplified
ste%mfp_slip(s,of) = & stt%mfp_slip(s,of) = &
prm%GrainSize/(1.0_pReal+prm%GrainSize*& prm%GrainSize/(1.0_pReal+prm%GrainSize*&
(ste%invLambdaSlip(s,of) + ste%invLambdaSlipTwin(s,of) + ste%invLambdaSlipTrans(s,of))) (stt%invLambdaSlip(s,of) + stt%invLambdaSlipTwin(s,of) + stt%invLambdaSlipTrans(s,of)))
else else
ste%mfp_slip(s,of) = & stt%mfp_slip(s,of) = &
prm%GrainSize/& prm%GrainSize/&
(1.0_pReal+prm%GrainSize*(ste%invLambdaSlip(s,of))) !!!!!! correct? (1.0_pReal+prm%GrainSize*(stt%invLambdaSlip(s,of))) !!!!!! correct?
endif endif
enddo enddo
!* mean free path between 2 obstacles seen by a growing twin/martensite !* mean free path between 2 obstacles seen by a growing twin/martensite
ste%mfp_twin(:,of) = prm%Cmfptwin*prm%GrainSize/ (1.0_pReal+prm%GrainSize*ste%invLambdaTwin(:,of)) stt%mfp_twin(:,of) = prm%Cmfptwin*prm%GrainSize/ (1.0_pReal+prm%GrainSize*stt%invLambdaTwin(:,of))
ste%mfp_trans(:,of) = prm%Cmfptrans*prm%GrainSize/(1.0_pReal+prm%GrainSize*ste%invLambdaTrans(:,of)) stt%mfp_trans(:,of) = prm%Cmfptrans*prm%GrainSize/(1.0_pReal+prm%GrainSize*stt%invLambdaTrans(:,of))
!* threshold stress for dislocation motion !* threshold stress for dislocation motion
forall (s = 1_pInt:prm%totalNslip) ste%threshold_stress_slip(s,of) = & forall (s = 1_pInt:prm%totalNslip) stt%threshold_stress_slip(s,of) = &
lattice_mu(ph)*prm%burgers_slip(s)*& lattice_mu(ph)*prm%burgers_slip(s)*&
sqrt(dot_product(ste%rhoEdge(1_pInt:prm%totalNslip,of)+ste%rhoEdgeDip(1_pInt:prm%totalNslip,of),& sqrt(dot_product(stt%rhoEdge(1_pInt:prm%totalNslip,of)+stt%rhoEdgeDip(1_pInt:prm%totalNslip,of),&
prm%interaction_SlipSlip(s,1:prm%totalNslip))) prm%interaction_SlipSlip(s,1:prm%totalNslip)))
!* threshold stress for growing twin/martensite !* threshold stress for growing twin/martensite
ste%threshold_stress_twin(:,of) = prm%Cthresholdtwin* & stt%threshold_stress_twin(:,of) = prm%Cthresholdtwin* &
(sfe/(3.0_pReal*prm%burgers_twin)+ 3.0_pReal*prm%burgers_twin*lattice_mu(ph)/ & (sfe/(3.0_pReal*prm%burgers_twin)+ 3.0_pReal*prm%burgers_twin*lattice_mu(ph)/ &
(prm%L0_twin*prm%burgers_slip)) ! slip burgers here correct? (prm%L0_twin*prm%burgers_slip)) ! slip burgers here correct?
ste%threshold_stress_trans(:,of) = prm%Cthresholdtrans* & stt%threshold_stress_trans(:,of) = prm%Cthresholdtrans* &
(sfe/(3.0_pReal*prm%burgers_trans) + 3.0_pReal*prm%burgers_trans*lattice_mu(ph)/& (sfe/(3.0_pReal*prm%burgers_trans) + 3.0_pReal*prm%burgers_trans*lattice_mu(ph)/&
(prm%L0_trans*prm%burgers_slip) + prm%transStackHeight*prm%deltaG/ (3.0_pReal*prm%burgers_trans) ) (prm%L0_trans*prm%burgers_slip) + prm%transStackHeight*prm%deltaG/ (3.0_pReal*prm%burgers_trans) )
! final volume after growth ! final volume after growth
ste%twinVolume(:,of) = (PI/4.0_pReal)*prm%twinsize*ste%mfp_twin(:,of)**2.0_pReal stt%twinVolume(:,of) = (PI/4.0_pReal)*prm%twinsize*stt%mfp_twin(:,of)**2.0_pReal
ste%martensiteVolume(:,of) = (PI/4.0_pReal)*prm%lamellarsizePerTransSystem*ste%mfp_trans(:,of)**2.0_pReal stt%martensiteVolume(:,of) = (PI/4.0_pReal)*prm%lamellarsizePerTransSystem*stt%mfp_trans(:,of)**2.0_pReal
@ -1169,7 +1160,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
real(pReal), dimension(3,3), intent(out) :: Lp real(pReal), dimension(3,3), intent(out) :: Lp
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar99 real(pReal), dimension(9,9), intent(out) :: dLp_dTstar99
integer(pInt) :: instance,ph,of,j,k,l,m,n,s1,s2 integer(pInt) :: ph,of,j,k,l,m,n,s1,s2,instance
real(pReal) :: sumf,sumftr,StressRatio_p,StressRatio_pminus1,& real(pReal) :: sumf,sumftr,StressRatio_p,StressRatio_pminus1,&
StressRatio_r,BoltzmannRatio,Ndot0_twin,stressRatio, & StressRatio_r,BoltzmannRatio,Ndot0_twin,stressRatio, &
Ndot0_trans,StressRatio_s, & Ndot0_trans,StressRatio_s, &
@ -1204,73 +1195,66 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
real(pReal), dimension(3,3) :: & real(pReal), dimension(3,3) :: &
S !< Second-Piola Kirchhoff stress S !< Second-Piola Kirchhoff stress
type(tParameters) :: prm type(tParameters) :: prm !< parameters of present instance
type(tDislotwinState) :: ste !< state of present instance
!* Shortened notation
of = phasememberAt(ipc,ip,el) of = phasememberAt(ipc,ip,el)
ph = phaseAt(ipc,ip,el) ph = material_phase(ipc,ip,el)
instance = phase_plasticityInstance(ph) instance = phase_plasticityInstance(ph)
associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))),&
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))))
sumf = sum(stt%twinFraction(1:prm%totalNtwin,of))
sumftr = sum(stt%stressTransFraction(1:prm%totalNtrans,of)) &
+ sum(stt%strainTransFraction(1:prm%totalNtrans,of))
Lp = 0.0_pReal Lp = 0.0_pReal
dLp_dS = 0.0_pReal dLp_dS = 0.0_pReal
S = math_Mandel6to33(Tstar_v) S = math_Mandel6to33(Tstar_v)
associate(prm => param(instance)) slipContribution: do j = 1_pInt, prm%totalNslip
!--------------------------------------------------------------------------------------------------
! Dislocation glide part
slipSystems: do j = 1_pInt, prm%totalNslip
tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j)) tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
significantSlipStress: if((abs(tau)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then significantSlipStress: if((abs(tau)-stt%threshold_stress_slip(j,of)) > tol_math_check) then
stressRatio =((abs(tau)- state(instance)%threshold_stress_slip(j,of))/& stressRatio = ((abs(tau)- stt%threshold_stress_slip(j,of))/&
(prm%SolidSolutionStrength+prm%tau_peierls(j))) (prm%SolidSolutionStrength+prm%tau_peierls(j)))
StressRatio_p = stressRatio** prm%p(j) StressRatio_p = stressRatio** prm%p(j)
StressRatio_pminus1 = stressRatio**(prm%p(j)-1.0_pReal) ! ToDo: no very helpful StressRatio_pminus1 = stressRatio**(prm%p(j)-1.0_pReal) ! ToDo: no very helpful
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature) BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
gdot_slip(j) = state(instance)%rhoEdge(j,of)*prm%burgers_slip(j)* prm%v0(j) &
* sign(exp(-BoltzmannRatio*(1-StressRatio_p)** prm%q(j)), tau)
!* Derivatives of shear rates gdot_slip(j) = stt%rhoEdge(j,of)*prm%burgers_slip(j)* prm%v0(j) &
* sign(exp(-BoltzmannRatio*(1-StressRatio_p)** prm%q(j)), tau)
dgdot_dtau = abs(gdot_slip(j))*BoltzmannRatio*prm%p(j) * prm%q(j) & dgdot_dtau = abs(gdot_slip(j))*BoltzmannRatio*prm%p(j) * prm%q(j) &
/ (prm%SolidSolutionStrength+prm%tau_peierls(j)) & / (prm%SolidSolutionStrength+prm%tau_peierls(j)) &
* StressRatio_pminus1*(1-StressRatio_p)**(prm%q(j)-1.0_pReal) * StressRatio_pminus1*(1-StressRatio_p)**(prm%q(j)-1.0_pReal)
else significantSlipStress
gdot_slip(j) = 0.0_pReal
dgdot_dtau = 0.0_pReal
endif significantSlipStress
Lp = Lp + gdot_slip(j)*prm%Schmid_slip(1:3,1:3,j) Lp = Lp + gdot_slip(j)*prm%Schmid_slip(1:3,1:3,j)
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) & dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) &
+ dgdot_dtau * prm%Schmid_slip(k,l,j) * prm%Schmid_slip(m,n,j) + dgdot_dtau * prm%Schmid_slip(k,l,j) * prm%Schmid_slip(m,n,j)
enddo slipSystems else significantSlipStress
gdot_slip(j) = 0.0_pReal
endif significantSlipStress
!-------------------------------------------------------------------------------------------------- enddo slipContribution
! correct Lp and dLp_dS for twinned and transformed fraction
!* Total twin volume fraction
sumf = sum(state(instance)%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
!* Total transformed volume fraction !ToDo: Why do this before shear banding?
sumftr = sum(state(instance)%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
sum(state(instance)%strainTransFraction(1_pInt:prm%totalNtrans,of))
Lp = Lp * (1.0_pReal - sumf - sumftr) Lp = Lp * (1.0_pReal - sumf - sumftr)
dLp_dS = dLp_dS * (1.0_pReal - sumf - sumftr) dLp_dS = dLp_dS * (1.0_pReal - sumf - sumftr)
!-------------------------------------------------------------------------------------------------- shearBanding: if(dNeq0(prm%sbVelocity)) then
! Shear banding (shearband) part
if(dNeq0(prm%sbVelocity)) then
BoltzmannRatio = prm%sbQedge/(kB*Temperature) BoltzmannRatio = prm%sbQedge/(kB*Temperature)
call math_eigenValuesVectorsSym(S,eigValues,eigVectors,error) call math_eigenValuesVectorsSym(S,eigValues,eigVectors,error)
do j = 1_pInt,6_pInt do j = 1_pInt,6_pInt
sb_s = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_sComposition(1:3,j)) sb_s = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_sComposition(1:3,j))
sb_m = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_mComposition(1:3,j)) sb_m = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_mComposition(1:3,j))
sb_Smatrix = math_tensorproduct33(sb_s,sb_m) sb_Smatrix = math_tensorproduct33(sb_s,sb_m)
sbSv(1:6,j,ipc,ip,el) = math_Mandel33to6(math_symmetric33(sb_Smatrix)) sbSv(1:6,j,ipc,ip,el) = math_Mandel33to6(math_symmetric33(sb_Smatrix))
!* Calculation of Lp
!* Resolved shear stress on shear banding system
tau = dot_product(Tstar_v,sbSv(1:6,j,ipc,ip,el)) tau = dot_product(Tstar_v,sbSv(1:6,j,ipc,ip,el))
!* Stress ratios !* Stress ratios
@ -1290,18 +1274,22 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) & dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) &
+ dgdot_dtau * sb_Smatrix(k,l) * sb_Smatrix(m,n) + dgdot_dtau * sb_Smatrix(k,l) * sb_Smatrix(m,n)
enddo enddo
end if
twinSystems: do j = 1_pInt, prm%totalNtwin endif shearBanding
twinContibution: do j = 1_pInt, prm%totalNtwin
tau = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j)) tau = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
significantTwinStress: if (tau > tol_math_check) then significantTwinStress: if (tau > tol_math_check) then
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau)**prm%r(j) StressRatio_r = (stt%threshold_stress_twin(j,of)/tau)**prm%r(j)
isFCCtwin: if (lattice_structure(ph) == LATTICE_FCC_ID) then isFCCtwin: if (lattice_structure(ph) == LATTICE_FCC_ID) then
s1=prm%fcc_twinNucleationSlipPair(1,j) s1=prm%fcc_twinNucleationSlipPair(1,j)
s2=prm%fcc_twinNucleationSlipPair(2,j) s2=prm%fcc_twinNucleationSlipPair(2,j)
if (tau < tau_r_twin(j,instance)) then if (tau < tau_r_twin(j,instance)) then
Ndot0_twin=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& !!!!! correct? Ndot0_twin=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+& !!!!! correct?
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/& abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
(prm%L0_twin*prm%burgers_slip(j))*& (prm%L0_twin*prm%burgers_slip(j))*&
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*& (1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
(tau_r_twin(j,instance)-tau))) (tau_r_twin(j,instance)-tau)))
@ -1311,30 +1299,32 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
else isFCCtwin else isFCCtwin
Ndot0_twin=prm%Ndot0_twin(j) Ndot0_twin=prm%Ndot0_twin(j)
endif isFCCtwin endif isFCCtwin
gdot_twin = (1.0_pReal-sumf-sumftr)* prm%shear_twin(j) * state(instance)%twinVolume(j,of) &
gdot_twin = (1.0_pReal-sumf-sumftr)* prm%shear_twin(j) * stt%twinVolume(j,of) &
* Ndot0_twin*exp(-StressRatio_r) * Ndot0_twin*exp(-StressRatio_r)
dgdot_dtau = ((gdot_twin*prm%r(j))/tau)*StressRatio_r dgdot_dtau = ((gdot_twin*prm%r(j))/tau)*StressRatio_r
else significantTwinStress
gdot_twin = 0.0_pReal
dgdot_dtau = 0.0_pReal
endif significantTwinStress
Lp = Lp + gdot_twin*prm%Schmid_twin(1:3,1:3,j) Lp = Lp + gdot_twin*prm%Schmid_twin(1:3,1:3,j)
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) & dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) &
+ dgdot_dtau* prm%Schmid_twin(k,l,j)*prm%Schmid_twin(m,n,j) + dgdot_dtau* prm%Schmid_twin(k,l,j)*prm%Schmid_twin(m,n,j)
enddo twinSystems endif significantTwinStress
enddo twinContibution
transConstribution: do j = 1_pInt, prm%totalNtrans
transSystems: do j = 1_pInt, prm%totalNtrans
tau = math_mul33xx33(S,prm%Schmid_trans(1:3,1:3,j)) tau = math_mul33xx33(S,prm%Schmid_trans(1:3,1:3,j))
significantTransStress: if (tau > tol_math_check) then significantTransStress: if (tau > tol_math_check) then
StressRatio_s = (state(instance)%threshold_stress_trans(j,of)/tau)**prm%s(j) StressRatio_s = (stt%threshold_stress_trans(j,of)/tau)**prm%s(j)
isFCCtrans: if (lattice_structure(ph) == LATTICE_FCC_ID) then isFCCtrans: if (lattice_structure(ph) == LATTICE_FCC_ID) then
s1=prm%fcc_twinNucleationSlipPair(1,j) s1=prm%fcc_twinNucleationSlipPair(1,j)
s2=prm%fcc_twinNucleationSlipPair(2,j) s2=prm%fcc_twinNucleationSlipPair(2,j)
if (tau < tau_r_trans(j,instance)) then if (tau < tau_r_trans(j,instance)) then
Ndot0_trans=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& !!!!! correct? Ndot0_trans=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+& !!!!! correct?
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/& abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
(prm%L0_trans*prm%burgers_slip(j))*& (prm%L0_trans*prm%burgers_slip(j))*&
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*(tau_r_trans(j,instance)-tau))) (1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*(tau_r_trans(j,instance)-tau)))
else else
@ -1343,19 +1333,19 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
else isFCCtrans else isFCCtrans
Ndot0_trans=prm%Ndot0_trans(j) Ndot0_trans=prm%Ndot0_trans(j)
endif isFCCtrans endif isFCCtrans
gdot_trans = (1.0_pReal-sumf-sumftr)* state(instance)%martensiteVolume(j,of) &
gdot_trans = (1.0_pReal-sumf-sumftr)* stt%martensiteVolume(j,of) &
* Ndot0_trans*exp(-StressRatio_s) * Ndot0_trans*exp(-StressRatio_s)
dgdot_dtau = ((gdot_trans*prm%s(j))/tau)*StressRatio_s dgdot_dtau = ((gdot_trans*prm%s(j))/tau)*StressRatio_s
else significantTransStress
gdot_trans = 0.0_pReal
dgdot_dtau = 0.0_pReal
endif significantTransStress
Lp = Lp + gdot_trans*prm%Schmid_trans(1:3,1:3,j) Lp = Lp + gdot_trans*prm%Schmid_trans(1:3,1:3,j)
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) & dLp_dS(k,l,m,n) = dLp_dS(k,l,m,n) &
+ dgdot_dtau * prm%Schmid_trans(k,l,j)* prm%Schmid_trans(m,n,j) + dgdot_dtau * prm%Schmid_trans(k,l,j)* prm%Schmid_trans(m,n,j)
enddo transSystems endif significantTransStress
enddo transConstribution
end associate end associate
dLp_dTstar99 = math_Plain3333to99(dLp_dS) dLp_dTstar99 = math_Plain3333to99(dLp_dS)
@ -1409,59 +1399,64 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
real(pReal), dimension(3,3) :: & real(pReal), dimension(3,3) :: &
S !< Second-Piola Kirchhoff stress S !< Second-Piola Kirchhoff stress
type(tParameters) :: prm type(tParameters) :: prm
type(tDislotwinState) :: stt, dst
!* Shortened notation !* Shortened notation
of = phasememberAt(ipc,ip,el) of = phasememberAt(ipc,ip,el)
ph = phaseAt(ipc,ip,el) ph = material_phase(ipc,ip,el)
instance = phase_plasticityInstance(ph)
S = math_Mandel6to33(Tstar_v) S = math_Mandel6to33(Tstar_v)
associate(prm => param(instance))
!* Total twin volume fraction
sumf = sum(state(instance)%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
plasticState(ph)%dotState(:,of) = 0.0_pReal plasticState(ph)%dotState(:,of) = 0.0_pReal
!* Total transformed volume fraction associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))), &
sumftr = sum(state(instance)%stressTransFraction(1_pInt:prm%totalNtrans,of)) + & stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))), &
sum(state(instance)%strainTransFraction(1_pInt:prm%totalNtrans,of)) dst => dotstate(phase_plasticityInstance(material_phase(ipc,ip,el))))
sumf = sum(stt%twinFraction(1_pInt:prm%totalNtwin,of))
sumftr = sum(stt%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
sum(stt%strainTransFraction(1_pInt:prm%totalNtrans,of))
slipState: do j = 1_pInt, prm%totalNslip
slipSystems: do j = 1_pInt, prm%totalNslip
tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j)) tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
significantSlipStress1: if((abs(tau)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
stressRatio =((abs(tau)- state(instance)%threshold_stress_slip(j,of))/& significantSlipStress1: if((abs(tau)-stt%threshold_stress_slip(j,of)) > tol_math_check) then
stressRatio =((abs(tau)- stt%threshold_stress_slip(j,of))/&
(prm%SolidSolutionStrength+prm%tau_peierls(j))) (prm%SolidSolutionStrength+prm%tau_peierls(j)))
StressRatio_p = stressRatio** prm%p(j) StressRatio_p = stressRatio** prm%p(j)
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature) BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
gdot_slip(j) = state(instance)%rhoEdge(j,of)*prm%burgers_slip(j)*prm%v0(j) & gdot_slip(j) = stt%rhoEdge(j,of)*prm%burgers_slip(j)*prm%v0(j) &
* sign(exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**prm%q(j)),tau) * sign(exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**prm%q(j)),tau)
else significantSlipStress1 else significantSlipStress1
gdot_slip(j) = 0.0_pReal gdot_slip(j) = 0.0_pReal
endif significantSlipStress1 endif significantSlipStress1
DotRhoMultiplication = abs(gdot_slip(j))/(prm%burgers_slip(j)*state(instance)%mfp_slip(j,of))
DotRhoMultiplication = abs(gdot_slip(j))/(prm%burgers_slip(j)*stt%mfp_slip(j,of))
EdgeDipMinDistance = prm%CEdgeDipMinDistance*prm%burgers_slip(j) EdgeDipMinDistance = prm%CEdgeDipMinDistance*prm%burgers_slip(j)
significantSlipStress2: if (dEq0(tau)) then significantSlipStress2: if (dEq0(tau)) then
DotRhoDipFormation = 0.0_pReal DotRhoDipFormation = 0.0_pReal
else significantSlipStress2 else significantSlipStress2
EdgeDipDistance = (3.0_pReal*lattice_mu(ph)*prm%burgers_slip(j))/& EdgeDipDistance = (3.0_pReal*lattice_mu(ph)*prm%burgers_slip(j))/&
(16.0_pReal*PI*abs(tau)) (16.0_pReal*PI*abs(tau))
if (EdgeDipDistance>state(instance)%mfp_slip(j,of)) EdgeDipDistance=state(instance)%mfp_slip(j,of) if (EdgeDipDistance>stt%mfp_slip(j,of)) EdgeDipDistance=stt%mfp_slip(j,of)
if (EdgeDipDistance<EdgeDipMinDistance) EdgeDipDistance=EdgeDipMinDistance if (EdgeDipDistance<EdgeDipMinDistance) EdgeDipDistance=EdgeDipMinDistance
DotRhoDipFormation = ((2.0_pReal*(EdgeDipDistance-EdgeDipMinDistance))/prm%burgers_slip(j))*& DotRhoDipFormation = ((2.0_pReal*(EdgeDipDistance-EdgeDipMinDistance))/prm%burgers_slip(j))*&
state(instance)%rhoEdge(j,of)*abs(gdot_slip(j))*prm%dipoleFormationFactor stt%rhoEdge(j,of)*abs(gdot_slip(j))*prm%dipoleFormationFactor
endif significantSlipStress2 endif significantSlipStress2
!* Spontaneous annihilation of 2 single edge dislocations !* Spontaneous annihilation of 2 single edge dislocations
DotRhoEdgeEdgeAnnihilation = ((2.0_pReal*EdgeDipMinDistance)/prm%burgers_slip(j))*& DotRhoEdgeEdgeAnnihilation = ((2.0_pReal*EdgeDipMinDistance)/prm%burgers_slip(j))*&
state(instance)%rhoEdge(j,of)*abs(gdot_slip(j)) stt%rhoEdge(j,of)*abs(gdot_slip(j))
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent !* Spontaneous annihilation of a single edge dislocation with a dipole constituent
DotRhoEdgeDipAnnihilation = ((2.0_pReal*EdgeDipMinDistance)/prm%burgers_slip(j)) & DotRhoEdgeDipAnnihilation = ((2.0_pReal*EdgeDipMinDistance)/prm%burgers_slip(j)) &
* state(instance)%rhoEdgeDip(j,of)*abs(gdot_slip(j)) * stt%rhoEdgeDip(j,of)*abs(gdot_slip(j))
!* Dislocation dipole climb !* Dislocation dipole climb
AtomicVolume = prm%CAtomicVolume*prm%burgers_slip(j)**(3.0_pReal) ! no need to calculate this over and over again AtomicVolume = prm%CAtomicVolume*prm%burgers_slip(j)**(3.0_pReal) ! no need to calculate this over and over again
VacancyDiffusion = prm%D0*exp(-prm%Qsd/(kB*Temperature)) VacancyDiffusion = prm%D0*exp(-prm%Qsd/(kB*Temperature))
if (dEq0(tau)) then if (dEq0(tau)) then
DotRhoEdgeDipClimb = 0.0_pReal DotRhoEdgeDipClimb = 0.0_pReal
else else
@ -1470,25 +1465,27 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
else else
ClimbVelocity = 3.0_pReal*lattice_mu(ph)*VacancyDiffusion*AtomicVolume/ & ClimbVelocity = 3.0_pReal*lattice_mu(ph)*VacancyDiffusion*AtomicVolume/ &
(2.0_pReal*pi*kB*Temperature*(EdgeDipDistance+EdgeDipMinDistance)) (2.0_pReal*pi*kB*Temperature*(EdgeDipDistance+EdgeDipMinDistance))
DotRhoEdgeDipClimb = 4.0_pReal*ClimbVelocity*state(instance)%rhoEdgeDip(j,of)/ & DotRhoEdgeDipClimb = 4.0_pReal*ClimbVelocity*stt%rhoEdgeDip(j,of)/ &
(EdgeDipDistance-EdgeDipMinDistance) (EdgeDipDistance-EdgeDipMinDistance)
endif endif
endif endif
dotState(instance)%rhoEdge(j,of) = DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation dst%rhoEdge(j,of) = DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
dotState(instance)%rhoEdgeDip(j,of) = DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb dst%rhoEdgeDip(j,of) = DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
dotState(instance)%accshear_slip(j,of) = abs(gdot_slip(j)) dst%accshear_slip(j,of) = abs(gdot_slip(j))
enddo slipSystems enddo slipState
twinState: do j = 1_pInt, prm%totalNtwin
twinSystems: do j = 1_pInt, prm%totalNtwin
tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j)) tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
significantTwinStress: if (tau > tol_math_check) then significantTwinStress: if (tau > tol_math_check) then
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau)**prm%r(j) StressRatio_r = (stt%threshold_stress_twin(j,of)/tau)**prm%r(j)
isFCCtwin: if (lattice_structure(ph) == LATTICE_FCC_ID) then isFCCtwin: if (lattice_structure(ph) == LATTICE_FCC_ID) then
s1=prm%fcc_twinNucleationSlipPair(1,j) s1=prm%fcc_twinNucleationSlipPair(1,j)
s2=prm%fcc_twinNucleationSlipPair(2,j) s2=prm%fcc_twinNucleationSlipPair(2,j)
if (tau < tau_r_twin(j,instance)) then if (tau < tau_r_twin(j,instance)) then
Ndot0_twin=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& Ndot0_twin=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+&
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/& abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
(prm%L0_twin*prm%burgers_slip(j))*(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*& (prm%L0_twin*prm%burgers_slip(j))*(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
(tau_r_twin(j,instance)-tau))) (tau_r_twin(j,instance)-tau)))
else else
@ -1497,22 +1494,25 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
else isFCCtwin else isFCCtwin
Ndot0_twin=prm%Ndot0_twin(j) Ndot0_twin=prm%Ndot0_twin(j)
endif isFCCtwin endif isFCCtwin
dotState(instance)%twinFraction(j,of) = (1.0_pReal-sumf-sumftr)*& dst%twinFraction(j,of) = (1.0_pReal-sumf-sumftr)*&
state(instance)%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r) stt%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
dotState(instance)%accshear_twin(j,of) = dotState(instance)%twinFraction(j,of) * prm%shear_twin(j) dst%accshear_twin(j,of) = dst%twinFraction(j,of) * prm%shear_twin(j)
endif significantTwinStress endif significantTwinStress
enddo twinSystems
transSystems: do j = 1_pInt, prm%totalNtrans enddo twinState
transState: do j = 1_pInt, prm%totalNtrans
tau = math_mul33xx33(S,prm%Schmid_trans(1:3,1:3,j)) tau = math_mul33xx33(S,prm%Schmid_trans(1:3,1:3,j))
significantTransStress: if (tau > tol_math_check) then significantTransStress: if (tau > tol_math_check) then
StressRatio_s = (state(instance)%threshold_stress_trans(j,of)/tau)**prm%s(j) StressRatio_s = (stt%threshold_stress_trans(j,of)/tau)**prm%s(j)
isFCCtrans: if (lattice_structure(ph) == LATTICE_FCC_ID) then isFCCtrans: if (lattice_structure(ph) == LATTICE_FCC_ID) then
s1=prm%fcc_twinNucleationSlipPair(1,j) s1=prm%fcc_twinNucleationSlipPair(1,j)
s2=prm%fcc_twinNucleationSlipPair(2,j) s2=prm%fcc_twinNucleationSlipPair(2,j)
if (tau < tau_r_trans(j,instance)) then if (tau < tau_r_trans(j,instance)) then
Ndot0_trans=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& Ndot0_trans=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+&
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/& abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
(prm%L0_trans*prm%burgers_slip(j))*(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*& (prm%L0_trans*prm%burgers_slip(j))*(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
(tau_r_trans(j,instance)-tau))) (tau_r_trans(j,instance)-tau)))
else else
@ -1521,13 +1521,14 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
else isFCCtrans else isFCCtrans
Ndot0_trans=prm%Ndot0_trans(j) Ndot0_trans=prm%Ndot0_trans(j)
endif isFCCtrans endif isFCCtrans
dotState(instance)%strainTransFraction(j,of) = (1.0_pReal-sumf-sumftr)*& dst%strainTransFraction(j,of) = (1.0_pReal-sumf-sumftr)*&
state(instance)%martensiteVolume(j,of)*Ndot0_trans*exp(-StressRatio_s) stt%martensiteVolume(j,of)*Ndot0_trans*exp(-StressRatio_s)
!* Dotstate for accumulated shear due to transformation !* Dotstate for accumulated shear due to transformation
!dotState(instance)%accshear_trans(j,of) = dotState(instance)%strainTransFraction(j,of) * & !dst%accshear_trans(j,of) = dst%strainTransFraction(j,of) * &
! lattice_sheartrans(index_myfamily+i,ph) ! lattice_sheartrans(index_myfamily+i,ph)
endif significantTransStress endif significantTransStress
enddo transSystems
enddo transState
end associate end associate
end subroutine plastic_dislotwin_dotState end subroutine plastic_dislotwin_dotState
@ -1542,25 +1543,17 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
tol_math_check, & tol_math_check, &
dEq0 dEq0
use math, only: & use math, only: &
pi, & PI, &
math_mul33xx33, & math_mul33xx33, &
math_Mandel6to33, & math_Mandel6to33
math_eigenValuesSym33, &
math_eigenValuesVectorsSym33
use material, only: & use material, only: &
material_phase, & material_phase, &
plasticState, & plasticState, &
phase_plasticityInstance,& phase_plasticityInstance,&
phaseAt, phasememberAt phaseAt, phasememberAt
use lattice, only: & use lattice, only: &
lattice_Sslip, &
lattice_Stwin, &
lattice_NslipSystem, &
lattice_NtwinSystem, &
lattice_shearTwin, &
lattice_mu, & lattice_mu, &
lattice_structure, & lattice_structure, &
lattice_fcc_twinNucleationSlipPair, &
LATTICE_fcc_ID LATTICE_fcc_ID
implicit none implicit none
@ -1577,7 +1570,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
postResults postResults
integer(pInt) :: & integer(pInt) :: &
instance,& instance,&
f,o,i,c,j,index_myFamily,& o,c,j,&
s1,s2, & s1,s2, &
ph, & ph, &
of of
@ -1585,12 +1578,11 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
stressRatio stressRatio
real(preal), dimension(plasticState(material_phase(ipc,ip,el))%Nslip) :: & real(preal), dimension(plasticState(material_phase(ipc,ip,el))%Nslip) :: &
gdot_slip gdot_slip
real(pReal), dimension(3,3) :: eigVectors
real(pReal), dimension (3) :: eigValues
real(pReal), dimension(3,3) :: & real(pReal), dimension(3,3) :: &
S !< Second-Piola Kirchhoff stress S !< Second-Piola Kirchhoff stress
type(tParameters) :: prm type(tParameters) :: prm
type(tDislotwinState) :: stt
!* Shortened notation !* Shortened notation
of = phasememberAt(ipc,ip,el) of = phasememberAt(ipc,ip,el)
@ -1599,9 +1591,10 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
S = math_Mandel6to33(Tstar_v) S = math_Mandel6to33(Tstar_v)
associate(prm => param(instance)) associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))), &
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))))
!* Total twin volume fraction !* Total twin volume fraction
sumf = sum(state(instance)%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0 sumf = sum(stt%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
!* Required output !* Required output
c = 0_pInt c = 0_pInt
@ -1610,24 +1603,19 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
select case(prm%outputID(o)) select case(prm%outputID(o))
case (edge_density_ID) case (edge_density_ID)
postResults(c+1_pInt:c+prm%totalNslip) = state(instance)%rhoEdge(1_pInt:prm%totalNslip,of) postResults(c+1_pInt:c+prm%totalNslip) = stt%rhoEdge(1_pInt:prm%totalNslip,of)
c = c + prm%totalNslip c = c + prm%totalNslip
case (dipole_density_ID) case (dipole_density_ID)
postResults(c+1_pInt:c+prm%totalNslip) = state(instance)%rhoEdgeDip(1_pInt:prm%totalNslip,of) postResults(c+1_pInt:c+prm%totalNslip) = stt%rhoEdgeDip(1_pInt:prm%totalNslip,of)
c = c + prm%totalNslip c = c + prm%totalNslip
case (shear_rate_slip_ID) case (shear_rate_slip_ID)
j = 0_pInt do j = 1_pInt, prm%totalNslip
do f = 1_pInt,size(prm%Nslip,1) ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
do i = 1_pInt,prm%Nslip(f) ! process each (active) slip system in family
j = j + 1_pInt ! could be taken from state by now!
!* Resolved shear stress on slip system !* Resolved shear stress on slip system
tau = math_mul33xx33(S,lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph)) tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
!* Stress ratios !* Stress ratios
if((abs(tau)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then if((abs(tau)-stt%threshold_stress_slip(j,of)) > tol_math_check) then
!* Stress ratios !* Stress ratios
stressRatio = ((abs(tau)-state(ph)%threshold_stress_slip(j,of))/& stressRatio = ((abs(tau)-stt%threshold_stress_slip(j,of))/&
(prm%SolidSolutionStrength+& (prm%SolidSolutionStrength+&
prm%tau_peierls(j))) prm%tau_peierls(j)))
StressRatio_p = stressRatio** prm%p(j) StressRatio_p = stressRatio** prm%p(j)
@ -1635,7 +1623,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
!* Boltzmann ratio !* Boltzmann ratio
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature) BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
!* Initial shear rates !* Initial shear rates
DotGamma0 = state(instance)%rhoEdge(j,of)*prm%burgers_slip(j)* prm%v0(j) DotGamma0 = stt%rhoEdge(j,of)*prm%burgers_slip(j)* prm%v0(j)
!* Shear rates due to slip !* Shear rates due to slip
postResults(c+j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**& postResults(c+j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**&
@ -1644,44 +1632,34 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
postResults(c+j) = 0.0_pReal postResults(c+j) = 0.0_pReal
endif endif
enddo ; enddo enddo
c = c + prm%totalNslip c = c + prm%totalNslip
case (accumulated_shear_slip_ID) case (accumulated_shear_slip_ID)
postResults(c+1_pInt:c+prm%totalNslip) = & postResults(c+1_pInt:c+prm%totalNslip) = &
state(instance)%accshear_slip(1_pInt:prm%totalNslip,of) stt%accshear_slip(1_pInt:prm%totalNslip,of)
c = c + prm%totalNslip c = c + prm%totalNslip
case (mfp_slip_ID) case (mfp_slip_ID)
postResults(c+1_pInt:c+prm%totalNslip) =& postResults(c+1_pInt:c+prm%totalNslip) =&
state(instance)%mfp_slip(1_pInt:prm%totalNslip,of) stt%mfp_slip(1_pInt:prm%totalNslip,of)
c = c + prm%totalNslip c = c + prm%totalNslip
case (resolved_stress_slip_ID) case (resolved_stress_slip_ID)
j = 0_pInt do j = 1_pInt, prm%totalNslip
do f = 1_pInt,size(prm%Nslip,1) ! loop over all slip families postResults(c+j) = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family enddo
do i = 1_pInt,prm%Nslip(f) ! process each (active) slip system in family
j = j + 1_pInt
postResults(c+j) =&
math_mul33xx33(S,lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph))
enddo; enddo
c = c + prm%totalNslip c = c + prm%totalNslip
case (threshold_stress_slip_ID) case (threshold_stress_slip_ID)
postResults(c+1_pInt:c+prm%totalNslip) = & postResults(c+1_pInt:c+prm%totalNslip) = &
state(instance)%threshold_stress_slip(1_pInt:prm%totalNslip,of) stt%threshold_stress_slip(1_pInt:prm%totalNslip,of)
c = c + prm%totalNslip c = c + prm%totalNslip
case (edge_dipole_distance_ID) case (edge_dipole_distance_ID)
j = 0_pInt do j = 1_pInt, prm%totalNslip
do f = 1_pInt,size(prm%Nslip,1) ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
do i = 1_pInt,prm%Nslip(f) ! process each (active) slip system in family
j = j + 1_pInt
postResults(c+j) = & postResults(c+j) = &
(3.0_pReal*lattice_mu(ph)*prm%burgers_slip(j))/& (3.0_pReal*lattice_mu(ph)*prm%burgers_slip(j))/&
(16.0_pReal*pi*abs(math_mul33xx33(S,lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph)))) (16.0_pReal*PI*abs(math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))))
postResults(c+j)=min(postResults(c+j),& postResults(c+j)=min(postResults(c+j),stt%mfp_slip(j,of))
state(instance)%mfp_slip(j,of))
! postResults(c+j)=max(postResults(c+j),& ! postResults(c+j)=max(postResults(c+j),&
! plasticState(ph)%state(4*ns+2*nt+2*nr+j, of)) ! plasticState(ph)%state(4*ns+2*nt+2*nr+j, of))
enddo; enddo enddo
c = c + prm%totalNslip c = c + prm%totalNslip
case (resolved_stress_shearband_ID) case (resolved_stress_shearband_ID)
do j = 1_pInt,6_pInt ! loop over all shearband families do j = 1_pInt,6_pInt ! loop over all shearband families
@ -1707,33 +1685,26 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
!* Initial shear rates !* Initial shear rates
DotGamma0 = prm%sbVelocity DotGamma0 = prm%sbVelocity
! Shear rate due to shear band ! Shear rate due to shear band
postResults(c+j) = & postResults(c+j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**prm%qShearBand)*&
DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**prm%qShearBand)*&
sign(1.0_pReal,tau) sign(1.0_pReal,tau)
enddo enddo
c = c + 6_pInt c = c + 6_pInt
case (twin_fraction_ID) case (twin_fraction_ID)
postResults(c+1_pInt:c+prm%totalNtwin) = state(instance)%twinFraction(1_pInt:prm%totalNtwin,of) postResults(c+1_pInt:c+prm%totalNtwin) = stt%twinFraction(1_pInt:prm%totalNtwin,of)
c = c + prm%totalNtwin c = c + prm%totalNtwin
case (shear_rate_twin_ID) case (shear_rate_twin_ID)
if (prm%totalNtwin > 0_pInt) then do j = 1_pInt, prm%totalNslip
j = 0_pInt
do f = 1_pInt,size(prm%Nslip,1)
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
do i = 1_pInt,prm%Nslip(f) ! process each (active) slip system in family
j = j + 1_pInt
!* Resolved shear stress on slip system !* Resolved shear stress on slip system
tau = math_mul33xx33(S,lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph)) tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
!* Stress ratios !* Stress ratios
if((abs(tau)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then if((abs(tau)-stt%threshold_stress_slip(j,of)) > tol_math_check) then
!* Stress ratios !* Stress ratios
StressRatio_p = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/& StressRatio_p = ((abs(tau)-stt%threshold_stress_slip(j,of))/&
(prm%SolidSolutionStrength+& (prm%SolidSolutionStrength+&
prm%tau_peierls(j)))& prm%tau_peierls(j)))&
**prm%p(j) **prm%p(j)
StressRatio_pminus1 = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/& StressRatio_pminus1 = ((abs(tau)-stt%threshold_stress_slip(j,of))/&
(prm%SolidSolutionStrength+& (prm%SolidSolutionStrength+&
prm%tau_peierls(j)))& prm%tau_peierls(j)))&
**(prm%p(j)-1.0_pReal) **(prm%p(j)-1.0_pReal)
@ -1741,7 +1712,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature) BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
!* Initial shear rates !* Initial shear rates
DotGamma0 = & DotGamma0 = &
state(instance)%rhoEdge(j,of)*prm%burgers_slip(j)* & stt%rhoEdge(j,of)*prm%burgers_slip(j)* &
prm%v0(j) prm%v0(j)
!* Shear rates due to slip !* Shear rates due to slip
@ -1750,26 +1721,20 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
else else
gdot_slip(j) = 0.0_pReal gdot_slip(j) = 0.0_pReal
endif endif
enddo;enddo enddo
j = 0_pInt do j = 1_pInt, prm%totalNtwin
do f = 1_pInt,size(prm%Ntwin,1)
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
do i = 1,prm%Ntwin(f) ! process each (active) twin system in family
j = j + 1_pInt
tau = math_mul33xx33(S,lattice_Stwin(1:3,1:3,index_myFamily+i,ph)) tau = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
!* Shear rates due to twin
if ( tau > 0.0_pReal ) then if ( tau > 0.0_pReal ) then
select case(lattice_structure(ph)) select case(lattice_structure(ph))
case (LATTICE_fcc_ID) case (LATTICE_fcc_ID)
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i) s1=prm%fcc_twinNucleationSlipPair(1,j)
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i) s2=prm%fcc_twinNucleationSlipPair(2,j)
if (tau < tau_r_twin(j,instance)) then if (tau < tau_r_twin(j,instance)) then
Ndot0_twin=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& Ndot0_twin=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+&
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/& abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
(prm%L0_twin*& (prm%L0_twin*&
prm%burgers_slip(j))*& prm%burgers_slip(j))*&
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*& (1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
@ -1780,52 +1745,39 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
case default case default
Ndot0_twin=prm%Ndot0_twin(j) Ndot0_twin=prm%Ndot0_twin(j)
end select end select
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau) & StressRatio_r = (stt%threshold_stress_twin(j,of)/tau) &
**prm%r(j) **prm%r(j)
postResults(c+j) = & postResults(c+j) = (prm%MaxTwinFraction-sumf)*prm%shear_twin(j) * &
(prm%MaxTwinFraction-sumf)*lattice_shearTwin(index_myFamily+i,ph)*& stt%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
state(instance)%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
endif endif
enddo ; enddo enddo
endif
c = c + prm%totalNtwin c = c + prm%totalNtwin
case (accumulated_shear_twin_ID) case (accumulated_shear_twin_ID)
postResults(c+1_pInt:c+prm%totalNtwin) = state(instance)%accshear_twin(1_pInt:prm%totalNtwin,of) postResults(c+1_pInt:c+prm%totalNtwin) = stt%accshear_twin(1_pInt:prm%totalNtwin,of)
c = c + prm%totalNtwin c = c + prm%totalNtwin
case (mfp_twin_ID) case (mfp_twin_ID)
postResults(c+1_pInt:c+prm%totalNtwin) = state(instance)%mfp_twin(1_pInt:prm%totalNtwin,of) postResults(c+1_pInt:c+prm%totalNtwin) = stt%mfp_twin(1_pInt:prm%totalNtwin,of)
c = c + prm%totalNtwin c = c + prm%totalNtwin
case (resolved_stress_twin_ID) case (resolved_stress_twin_ID)
if (prm%totalNtwin > 0_pInt) then do j = 1_pInt, prm%totalNtwin
j = 0_pInt postResults(c+j) = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
do f = 1_pInt,size(prm%Ntwin,1) enddo
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
do i = 1_pInt,prm%Ntwin(f) ! process each (active) slip system in family
j = j + 1_pInt
postResults(c+j) = math_mul33xx33(S,lattice_Stwin(1:3,1:3,index_myFamily+i,ph))
enddo; enddo
endif
c = c + prm%totalNtwin c = c + prm%totalNtwin
case (threshold_stress_twin_ID) case (threshold_stress_twin_ID)
postResults(c+1_pInt:c+prm%totalNtwin) = state(instance)%threshold_stress_twin(1_pInt:prm%totalNtwin,of) postResults(c+1_pInt:c+prm%totalNtwin) = stt%threshold_stress_twin(1_pInt:prm%totalNtwin,of)
c = c + prm%totalNtwin c = c + prm%totalNtwin
case (stress_exponent_ID) case (stress_exponent_ID)
j = 0_pInt do j = 1_pInt, prm%totalNslip
do f = 1_pInt,size(prm%Nslip,1)
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
do i = 1_pInt,prm%Nslip(f) ! process each (active) slip system in family
j = j + 1_pInt
!* Resolved shear stress on slip system tau = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
tau = math_mul33xx33(S,lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph)) if((abs(tau)-stt%threshold_stress_slip(j,of)) > tol_math_check) then
if((abs(tau)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
!* Stress ratios !* Stress ratios
StressRatio_p = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/& StressRatio_p = ((abs(tau)-stt%threshold_stress_slip(j,of))/&
(prm%SolidSolutionStrength+& (prm%SolidSolutionStrength+&
prm%tau_peierls(j)))& prm%tau_peierls(j)))&
**prm%p(j) **prm%p(j)
StressRatio_pminus1 = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/& StressRatio_pminus1 = ((abs(tau)-stt%threshold_stress_slip(j,of))/&
(prm%SolidSolutionStrength+& (prm%SolidSolutionStrength+&
prm%tau_peierls(j)))& prm%tau_peierls(j)))&
**(prm%p(j)-1.0_pReal) **(prm%p(j)-1.0_pReal)
@ -1833,7 +1785,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature) BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
!* Initial shear rates !* Initial shear rates
DotGamma0 = & DotGamma0 = &
state(instance)%rhoEdge(j,of)*prm%burgers_slip(j)* & stt%rhoEdge(j,of)*prm%burgers_slip(j)* &
prm%v0(j) prm%v0(j)
!* Shear rates due to slip !* Shear rates due to slip
@ -1854,29 +1806,22 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
endif endif
!* Stress exponent !* Stress exponent
postResults(c+j) = & postResults(c+j) = merge(0.0_pReal,(tau/gdot_slip(j))*dgdot_dtauslip,dEq0(gdot_slip(j)))
merge(0.0_pReal,(tau/gdot_slip(j))*dgdot_dtauslip,dEq0(gdot_slip(j))) enddo
enddo ; enddo
c = c + prm%totalNslip c = c + prm%totalNslip
case (sb_eigenvalues_ID)
postResults(c+1_pInt:c+3_pInt) = math_eigenvaluesSym33(S)
c = c + 3_pInt
case (sb_eigenvectors_ID)
call math_eigenValuesVectorsSym33(S,eigValues,eigVectors)
postResults(c+1_pInt:c+9_pInt) = reshape(eigVectors,[9])
c = c + 9_pInt
case (stress_trans_fraction_ID) case (stress_trans_fraction_ID)
postResults(c+1_pInt:c+prm%totalNtrans) = & postResults(c+1_pInt:c+prm%totalNtrans) = &
state(instance)%stressTransFraction(1_pInt:prm%totalNtrans,of) stt%stressTransFraction(1_pInt:prm%totalNtrans,of)
c = c + prm%totalNtrans c = c + prm%totalNtrans
case (strain_trans_fraction_ID) case (strain_trans_fraction_ID)
postResults(c+1_pInt:c+prm%totalNtrans) = & postResults(c+1_pInt:c+prm%totalNtrans) = &
state(instance)%strainTransFraction(1_pInt:prm%totalNtrans,of) stt%strainTransFraction(1_pInt:prm%totalNtrans,of)
c = c + prm%totalNtrans c = c + prm%totalNtrans
case (trans_fraction_ID) case (trans_fraction_ID)
postResults(c+1_pInt:c+prm%totalNtrans) = & postResults(c+1_pInt:c+prm%totalNtrans) = &
state(instance)%stressTransFraction(1_pInt:prm%totalNtrans,of) + & stt%stressTransFraction(1_pInt:prm%totalNtrans,of) + &
state(instance)%strainTransFraction(1_pInt:prm%totalNtrans,of) stt%strainTransFraction(1_pInt:prm%totalNtrans,of)
c = c + prm%totalNtrans c = c + prm%totalNtrans
end select end select
enddo enddo