routines to do pointwise operations

This commit is contained in:
Martin Diehl 2019-05-20 19:54:57 +02:00
parent b35465b591
commit e7ca371b14
2 changed files with 175 additions and 0 deletions

View File

@ -2,6 +2,8 @@
import h5py
import re
import numpy as np
from queue import Queue
from . import util
# ------------------------------------------------------------------
class DADF5():
@ -15,6 +17,7 @@ class DADF5():
if mode not in ['a','r']:
print('Invalid file access mode')
else:
with h5py.File(filename,mode):
pass
@ -64,8 +67,33 @@ class DADF5():
self.filename = filename
self.mode = mode
def get_candidates(self,l):
groups = []
if type(l) is not list:
print('mist')
with h5py.File(self.filename,'r') as f:
for g in self.get_active_groups():
if set(l).issubset(f[g].keys()): groups.append(g)
return groups
def get_active_groups(self):
groups = []
for i,x in enumerate(self.active['increments']):
group_inc = 'inc{:05}'.format(self.active['increments'][i]['inc'])
for c in self.active['constituents']:
group_constituent = group_inc+'/constituent/'+c
for t in self.active['c_output_types']:
group_output_types = group_constituent+'/'+t
groups.append(group_output_types)
for m in self.active['materialpoints']:
group_materialpoint = group_inc+'/materialpoint/'+m
for t in self.active['m_output_types']:
group_output_types = group_materialpoint+'/'+t
groups.append(group_output_types)
return groups
def list_data(self):
"""Shows information on all datasets in the file"""
with h5py.File(self.filename,'r') as f:
@ -153,5 +181,106 @@ class DADF5():
print('unable to read materialpoint: '+ str(e))
return dataset
def add_Cauchy(self,PK2='P',F='F'):
def Cauchy(F,P):
return 1.0/np.linalg.det(F)*np.dot(P,F.T)
args = [{'label':F, 'shape':[3,3],'unit':'-'},
{'label':PK2,'shape':[3,3],'unit':'Pa'} ]
result = {'label':'Cauchy','unit':'Pa'}
self.add_generic_pointwise(Cauchy,args,result)
def add_Mises_stress(self,stress='Cauchy'):
def Mises_stress(stress):
dev = stress - np.trace(stress)/3.0*np.eye(3)
symdev = 0.5*(dev+dev.T)
return np.sqrt(np.sum(symdev*symdev.T)*3.0/2.0)
args = [{'label':stress,'shape':[3,3],'unit':'Pa'}]
result = {'label':'Mises({})'.format(stress),'unit':'Pa'}
self.add_generic_pointwise(Mises_stress,args,result)
def get_fitting(self,data):
groups = []
if type(data) is not list:
print('mist')
with h5py.File(self.filename,'r') as f:
for g in self.get_candidates([l['label'] for l in data]):
print(g)
fits = True
for d in data:
fits = fits and np.all(np.array(f[g+'/'+d['label']].shape[1:]) == np.array(d['shape'])) # ToDo: allow here shape none and check for unit
if fits: groups.append(g)
return groups
def add_generic_pointwise(self,func,args,result):
"""
Ggeneral function to add pointwise data
function 'func' first needs to have data arguments before other arguments
"""
groups = self.get_fitting(args)
def job(args):
out = args['out']
datasets_in = args['dat']
func = args['fun']
# calling the function per point might be performance-wise not optimal
# could be worth to investigate the performance for vectorized add_XXX functions that do the
# loops internally
for i in range(out.shape[0]):
arg = tuple([d[i,] for d in datasets_in])
out[i,] = func(*arg)
args['results'].put({'out':out,'group':args['group']})
Nthreads = 4 # ToDo: should be a parameter
results = Queue(Nthreads+1)
todo = []
for g in groups:
with h5py.File(self.filename,'r') as f:
datasets_in = [f[g+'/'+u['label']][()] for u in args]
# figure out dimension of results
testArg = tuple([d[0,] for d in datasets_in]) # to call function with first point
out = np.empty([datasets_in[0].shape[0]] + list(func(*testArg).shape)) # shape is Npoints x shape of the results for one point
todo.append({'dat':datasets_in,'fun':func,'out':out,'group':g,'results':results})
# Instantiate a thread pool with worker threads
pool = util.ThreadPool(Nthreads)
missingResults = len(todo)
# Add the jobs in bulk to the thread pool. Alternatively you could use
# `pool.add_task` to add single jobs. The code will block here, which
# makes it possible to cancel the thread pool with an exception when
# the currently running batch of workers is finished.
pool.map(job, todo[:Nthreads+1])
i = 0
while missingResults > 0:
r=results.get() # noqa
print(r['group'])
with h5py.File(self.filename,'r+') as f:
dataset_out = f[r['group']].create_dataset(result['label'],data=r['out'])
dataset_out.attrs['unit'] = result['unit']
missingResults-=1
try:
pool.add_task(job,todo[Nthreads+1+i])
except:
pass
i+=1
pool.wait_completion()

View File

@ -2,6 +2,9 @@
import sys,time,os,subprocess,shlex
import numpy as np
from optparse import Option
from queue import Queue
from threading import Thread
class bcolors:
"""
@ -425,3 +428,46 @@ def curve_fit_bound(f, xdata, ydata, p0=None, sigma=None, bounds=None, **kw):
pcov = np.inf
return (popt, pcov, infodict, errmsg, ier) if return_full else (popt, pcov)
class Worker(Thread):
"""Thread executing tasks from a given tasks queue"""
def __init__(self, tasks):
Thread.__init__(self)
self.tasks = tasks
self.daemon = True
self.start()
def run(self):
while True:
func, args, kargs = self.tasks.get()
try:
func(*args, **kargs)
except Exception as e:
# An exception happened in this thread
print(e)
finally:
# Mark this task as done, whether an exception happened or not
self.tasks.task_done()
class ThreadPool:
"""Pool of threads consuming tasks from a queue"""
def __init__(self, num_threads):
self.tasks = Queue(num_threads)
for _ in range(num_threads):
Worker(self.tasks)
def add_task(self, func, *args, **kargs):
"""Add a task to the queue"""
self.tasks.put((func, args, kargs))
def map(self, func, args_list):
"""Add a list of tasks to the queue"""
for args in args_list:
self.add_task(func, args)
def wait_completion(self):
"""Wait for completion of all the tasks in the queue"""
self.tasks.join()