some further improvements on ASCII table handling

This commit is contained in:
Martin Diehl 2014-07-10 09:27:51 +00:00
parent 0252fea3d7
commit e7c282a02d
4 changed files with 160 additions and 232 deletions

View File

@ -67,7 +67,7 @@ for file in files:
for label,formula in zip(options.labels,options.formulas):
interpolator = []
for column in re.findall(r'#(.+?)#',formula): # loop over column labels in formula
for column in re.findall(r'#(.+?)#',formula): # loop over column labels in formula
formula = formula.replace('#'+column+'#','%f')
if column in specials:
interpolator += ['specials["%s"]'%column]
@ -87,7 +87,7 @@ for file in files:
if label not in brokenFormula:
evaluator[label] = "'" + formula + "'%(" + ','.join(interpolator) + ")"
# ------------------------------------------ calculate one result to get length of labels ------
# ------------------------------------------ calculate one result to get length of labels ---------
table.data_read()
labelLen = {}
for label in options.labels:
@ -102,23 +102,20 @@ for file in files:
table.labels_append(label)
else:
table.labels_append(['%i_%s'%(i+1,label) for i in xrange(labelLen[label])])
table.head_write()
# ------------------------------------------ process data ---------------------------------------
outputAlive = True
table.data_rewind()
while outputAlive and table.data_read(): # read next data line of ASCII table
specials['_row_'] += 1 # count row
while outputAlive and table.data_read(): # read next data line of ASCII table
specials['_row_'] += 1 # count row
for label in options.labels: table.data_append(unravel(eval(eval(evaluator[label]))))
outputAlive = table.data_write() # output processed line
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result ---------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
outputAlive and table.output_flush() # just in case of buffered ASCII table
file['input'].close() # close input ASCII table
file['input'].close() # close input ASCII table (works for stdin)
file['output'].close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
file['output'].close() # close output ASCII table
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new

View File

@ -1,7 +1,8 @@
#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,re,sys,math,numpy,string
import os,re,sys,math,string
import numpy as np
from collections import defaultdict
from optparse import OptionParser
import damask
@ -24,7 +25,6 @@ parser.add_option('-f','--defgrad', dest='defgrad', type='string', metavar='
help='heading of columns containing deformation gradient [%default]')
parser.add_option('-p','--stress', dest='stress', type='string', metavar='string', \
help='heading of columns containing first Piola--Kirchhoff stress [%default]')
parser.set_defaults(defgrad = 'f')
parser.set_defaults(stress = 'p')
@ -33,7 +33,7 @@ parser.set_defaults(stress = 'p')
if options.defgrad == None or options.stress == None:
parser.error('missing data column...')
datainfo = { # list of requested labels per datatype
datainfo = { # list of requested labels per datatype
'defgrad': {'mandatory': True,
'len':9,
'label':[]},
@ -46,7 +46,6 @@ datainfo = { # lis
datainfo['defgrad']['label'].append(options.defgrad)
datainfo['stress']['label'].append(options.stress)
# ------------------------------------------ setup file handles ---------------------------------------
files = []
if filenames == []:
@ -61,8 +60,8 @@ for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
active = defaultdict(list)
@ -75,36 +74,34 @@ for file in files:
False:'%s' }[info['len']>1]%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
missingColumns |= info['mandatory'] # break if label is mandatory
missingColumns |= info['mandatory'] # break if label is mandatory
else:
active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
column[datatype][label] = table.labels.index(key) # remember columns of requested data
if missingColumns:
continue
# ------------------------------------------ assemble header ---------------------------------------
table.labels_append(['%i_Cauchy'%(i+1)
for i in xrange(datainfo['stress']['len'])]) # extend ASCII header with new labels
# ------------------------------------------ assemble header ---------------------------------------
for i in xrange(datainfo['stress']['len'])]) # extend ASCII header with new labels
table.head_write()
# ------------------------------------------ process data ---------------------------------------
outputAlive = True
while outputAlive and table.data_read(): # read next data line of ASCII table
table.data_rewind()
while outputAlive and table.data_read(): # read next data line of ASCII table
F = np.array(map(float,table.data[column['defgrad'][active['defgrad'][0]]:
column['defgrad'][active['defgrad'][0]]+datainfo['defgrad']['len']]),'d').reshape(3,3)
P = np.array(map(float,table.data[column['stress'][active['stress'][0]]:
column['stress'][active['stress'][0]]+datainfo['stress']['len']]),'d').reshape(3,3)
F = numpy.array(map(float,table.data[column['defgrad'][active['defgrad'][0]]:
column['defgrad'][active['defgrad'][0]]+datainfo['defgrad']['len']]),'d').reshape(3,3)
P = numpy.array(map(float,table.data[column['stress'][active['stress'][0]]:
column['stress'][active['stress'][0]]+datainfo['stress']['len']]),'d').reshape(3,3)
table.data_append(list(1.0/numpy.linalg.det(F)*numpy.dot(P,F.T).reshape(9))) # [Cauchy] = (1/det(F)) * [P].[F_transpose]
outputAlive = table.data_write() # output processed line
table.data_append(list(1.0/np.linalg.det(F)*np.dot(P,F.T).reshape(9))) # [Cauchy] = (1/det(F)) * [P].[F_transpose]
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result ---------------------------------------
table.output_flush() # just in case of buffered ASCII table
outputAlive and table.output_flush() # just in case of buffered ASCII table
file['input'].close() # close input ASCII table
file['input'].close() # close input ASCII table (works for stdin)
file['output'].close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
file['output'].close() # close output ASCII table
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new

View File

@ -1,174 +1,144 @@
#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,re,sys,math,string,numpy,damask
from optparse import OptionParser, Option
import os,re,sys,math,string
import numpy as np
from collections import defaultdict
from optparse import OptionParser
import damask
# -----------------------------
class extendableOption(Option):
# -----------------------------
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
# taken from online tutorial http://docs.python.org/library/optparse.html
scriptID = '$Id$'
scriptName = scriptID.split()[1]
ACTIONS = Option.ACTIONS + ("extend",)
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
def take_action(self, action, dest, opt, value, values, parser):
if action == "extend":
lvalue = value.split(",")
values.ensure_value(dest, []).extend(lvalue)
else:
Option.take_action(self, action, dest, opt, value, values, parser)
def location(idx,res):
return ( idx % res[0], \
(idx // res[0]) % res[1], \
(idx // res[0] // res[1]) % res[2] )
def index(location,res):
return ( location[0] % res[0] + \
(location[1] % res[1]) * res[0] + \
(location[2] % res[2]) * res[0] * res[1] )
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=extendableOption, usage='%prog options file[s]', description = """
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options file[s]', description = """
Add column containing debug information
Operates on periodic ordered three-dimensional data sets.
""" + string.replace('$Id$','\n','\\n')
""", version = string.replace(scriptID,'\n','\\n')
)
parser.add_option('--no-shape','-s', dest='noShape', action='store_false', \
help='do not calcuate shape mismatch [%default]')
parser.add_option('--no-volume','-v', dest='noVolume', action='store_false', \
help='do not calculate volume mismatch [%default]')
parser.add_option('-c','--coordinates', dest='coords', type='string',\
parser.add_option('-c','--coordinates', dest='coords', type='string', metavar='string', \
help='column heading for coordinates [%default]')
parser.add_option('-f','--deformation', dest='F', action='extend', type='string', \
help='heading(s) of columns containing deformation tensor values %default')
parser.add_option('-f','--deformation', dest='defgrad', type='string', metavar='string ', \
help='column heading for coordinates [%defgrad]')
parser.set_defaults(noVolume = False)
parser.set_defaults(noShape = False)
parser.set_defaults(coords = 'ip')
parser.set_defaults(F = 'f')
parser.set_defaults(defgrad = 'f')
(options,filenames) = parser.parse_args()
datainfo = { # list of requested labels per datatype
'F': {'len':9,
'label':[]},
datainfo = { # list of requested labels per datatype
'defgrad': {'len':9,
'label':[]},
}
if options.F != None: datainfo['F']['label'] += options.F
# ------------------------------------------ setup file handles ---------------------------------------
datainfo['defgrad']['label'].append(options.defgrad)
# ------------------------------------------ setup file handles -------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout})
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w')})
# ------------------------------------------ loop over input files ---------------------------------------
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
#--- loop over input files ------------------------------------------------------------------------
for file in files:
if file['name'] != 'STDIN': print file['name'],
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(string.replace('$Id$','\n','\\n') + \
'\t' + ' '.join(sys.argv[1:]))
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
# --------------- figure out dimension and resolution
# --------------- figure out dimension and resolution --------------------------------------------------
try:
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
except ValueError:
print 'no coordinate data found...'
file['croak'].write('no coordinate data found...\n'%key)
continue
active = defaultdict(list)
column = defaultdict(dict)
missingColumns = False
for datatype,info in datainfo.items():
for label in info['label']:
key = '1_%s'%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
missingColumns = True
else:
active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
column = table.labels.index(key)
if missingColumns:
continue
# --------------- figure out dimension and resolution ---------------------------------------------
grid = [{},{},{}]
while table.data_read(): # read next data line of ASCII table
while table.data_read(): # read next data line of ASCII table
for j in xrange(3):
grid[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
res = numpy.array([len(grid[0]),\
len(grid[1]),\
len(grid[2]),],'i') # resolution is number of distinct coordinates found
geomdim = res/numpy.maximum(numpy.ones(3,'d'),res-1.0)* \
numpy.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\
max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\
max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\
],'d') # dimension from bounding box, corrected for cell-centeredness
grid[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
res = np.array([len(grid[0]),\
len(grid[1]),\
len(grid[2]),],'i') # resolution is number of distinct coordinates found
geomdim = res/np.maximum(np.ones(3,'d'),res-1.0)* \
np.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\
max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\
max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\
],'d') # dimension from bounding box, corrected for cell-centeredness
if res[2] == 1:
geomdim[2] = min(geomdim[:2]/res[:2])
N = res.prod()
print '\t%s @ %s'%(geomdim,res)
# --------------- figure out columns to process
key = '1_%s' %options.F
if key not in table.labels:
sys.stderr.write('column %s not found...\n'%key)
else:
F = numpy.array([0.0 for i in xrange(N*9)]).reshape([3,3]+list(res))
if not options.noShape: table.labels_append(['shapeMismatch(%s)' %options.F])
if not options.noVolume: table.labels_append(['volMismatch(%s)'%options.F])
column = table.labels.index(key)
# ------------------------------------------ assemble header ---------------------------------------
if not options.noShape: table.labels_append(['shapeMismatch(%s)' %options.defgrad])
if not options.noVolume: table.labels_append(['volMismatch(%s)'%options.defgrad])
table.head_write()
# ------------------------------------------ read deformation gradient field -----------------------
table.data_rewind()
F = np.array([0.0 for i in xrange(N*9)]).reshape([3,3]+list(res))
idx = 0
while table.data_read(): # read next data line of ASCII table
(x,y,z) = location(idx,res) # figure out (x,y,z) position from line count
(x,y,z) = damask.gridLocation(idx,res) # figure out (x,y,z) position from line count
idx += 1
F[0:3,0:3,x,y,z] = numpy.array(map(float,table.data[column:column+9]),'d').reshape(3,3)
F[0:3,0:3,x,y,z] = np.array(map(float,table.data[column:column+9]),'d').reshape(3,3)
Favg = damask.core.math.tensorAvg(F)
if (res[0]%2 != 0 or res[1]%2 != 0 or (res[2] != 1 and res[2]%2 !=0)):
print 'using linear reconstruction for uneven resolution'
centres = damask.core.mesh.deformedCoordsLin(geomdim,F,Favg)
else:
centres = damask.core.mesh.deformedCoordsFFT(geomdim,F,1.0,Favg)
centres = damask.core.mesh.deformedCoordsFFT(geomdim,F,Favg,[1.0,1.0,1.0])
nodes = damask.core.mesh.nodesAroundCentres(geomdim,Favg,centres)
if not options.noShape: shapeMismatch = damask.core.mesh.shapeMismatch( geomdim,F,nodes,centres)
if not options.noVolume: volumeMismatch = damask.core.mesh.volumeMismatch(geomdim,F,nodes)
# ------------------------------------------ process data ---------------------------------------
table.data_rewind()
outputAlive = True
idx = 0
while table.data_read(): # read next data line of ASCII table
(x,y,z) = location(idx,res) # figure out (x,y,z) position from line count
while outputAlive and table.data_read(): # read next data line of ASCII table
(x,y,z) = damask.gridLocation(idx,res ) # figure out (x,y,z) position from line count
idx += 1
if not options.noShape: table.data_append( shapeMismatch[x,y,z])
if not options.noVolume: table.data_append(volumeMismatch[x,y,z])
table.data_write() # output processed line
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result ---------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
table.output_flush() # just in case of buffered ASCII table
file['input'].close() # close input ASCII table
file['input'].close() # close input ASCII table (works for stdin)
file['output'].close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
file['output'].close # close output ASCII table
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new

View File

@ -1,59 +1,33 @@
#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,re,sys,math,string,numpy,damask
from optparse import OptionParser, Option
# -----------------------------
class extendableOption(Option):
# -----------------------------
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
# taken from online tutorial http://docs.python.org/library/optparse.html
ACTIONS = Option.ACTIONS + ("extend",)
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
def take_action(self, action, dest, opt, value, values, parser):
if action == "extend":
lvalue = value.split(",")
values.ensure_value(dest, []).extend(lvalue)
else:
Option.take_action(self, action, dest, opt, value, values, parser)
def location(idx,res):
return ( idx % res[0], \
( idx // res[0]) % res[1], \
( idx // res[0] // res[1]) % res[2] )
def index(location,res):
return ( location[0] % res[0] + \
( location[1] % res[1]) * res[0] + \
( location[2] % res[2]) * res[1] * res[0] )
import os,re,sys,math,string
import numpy as np
from optparse import OptionParser
import damask
scriptID = '$Id$'
scriptName = scriptID.split()[1]
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Add column(s) containing curl of requested column(s).
Operates on periodic ordered three-dimensional data sets.
Deals with both vector- and tensor-valued fields.
""" + string.replace('$Id$','\n','\\n')
""", version=string.replace('$Id$','\n','\\n')
)
parser.add_option('-c','--coordinates', dest='coords', type='string',\
parser.add_option('-c','--coordinates', dest='coords', type='string', metavar='string', \
help='column heading for coordinates [%default]')
parser.add_option('-v','--vector', dest='vector', action='extend', type='string', \
parser.add_option('-v','--vector', dest='vector', action='extend', type='string', metavar='<string LIST>', \
help='heading of columns containing vector field values')
parser.add_option('-t','--tensor', dest='tensor', action='extend', type='string', \
parser.add_option('-t','--tensor', dest='tensor', action='extend', type='string', metavar='<string LIST>', \
help='heading of columns containing tensor field values')
parser.set_defaults(coords = 'ip')
parser.set_defaults(vector = [])
parser.set_defaults(tensor = [])
@ -63,7 +37,7 @@ parser.set_defaults(tensor = [])
if len(options.vector) + len(options.tensor) == 0:
parser.error('no data column specified...')
datainfo = { # list of requested labels per datatype
datainfo = { # list of requested labels per datatype
'vector': {'len':3,
'label':[]},
'tensor': {'len':9,
@ -73,43 +47,40 @@ datainfo = { # lis
if options.vector != None: datainfo['vector']['label'] += options.vector
if options.tensor != None: datainfo['tensor']['label'] += options.tensor
# ------------------------------------------ setup file handles ---------------------------------------
# ------------------------------------------ setup file handles ------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout})
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w')})
# ------------------------------------------ loop over input files ---------------------------------------
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
#--- loop over input files ------------------------------------------------------------------------
for file in files:
if file['name'] != 'STDIN': print file['name'],
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(string.replace('$Id$','\n','\\n') + \
'\t' + ' '.join(sys.argv[1:]))
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
# --------------- figure out dimension and resolution
# --------------- figure out dimension and resolution ----------------------------------------------
try:
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
except ValueError:
print 'no coordinate data found...'
file['croak'].write('no coordinate data found...\n'%key)
continue
grid = [{},{},{}]
while table.data_read(): # read next data line of ASCII table
for j in xrange(3):
grid[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
resolution = numpy.array([len(grid[0]),\
resolution = np.array([len(grid[0]),\
len(grid[1]),\
len(grid[2]),],'i') # resolution is number of distinct coordinates found
dimension = resolution/numpy.maximum(numpy.ones(3,'d'),resolution-1.0)* \
numpy.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\
dimension = resolution/np.maximum(np.ones(3,'d'),resolution-1.0)* \
np.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\
max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\
max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\
],'d') # dimension from bounding box, corrected for cell-centeredness
@ -117,8 +88,6 @@ for file in files:
dimension[2] = min(dimension[:2]/resolution[:2])
N = resolution.prod()
print '\t%s @ %s'%(dimension,resolution)
# --------------- figure out columns to process
active = {}
@ -140,59 +109,54 @@ for file in files:
if datatype not in values: values[datatype] = {}
if datatype not in curl: curl[datatype] = {}
active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
values[datatype][label] = numpy.array([0.0 for i in xrange(N*datainfo[datatype]['len'])]).\
column[datatype][label] = table.labels.index(key) # remember columns of requested data
values[datatype][label] = np.array([0.0 for i in xrange(N*datainfo[datatype]['len'])]).\
reshape(list(resolution)+[datainfo[datatype]['len']//3,3])
curl[datatype][label] = numpy.array([0.0 for i in xrange(N*datainfo[datatype]['len'])]).\
curl[datatype][label] = np.array([0.0 for i in xrange(N*datainfo[datatype]['len'])]).\
reshape(list(resolution)+[datainfo[datatype]['len']//3,3])
table.labels_append(['%i_curlFFT(%s)'%(i+1,label)
for i in xrange(datainfo[datatype]['len'])]) # extend ASCII header with new labels
for i in xrange(datainfo[datatype]['len'])]) # extend ASCII header with new labels
# ------------------------------------------ assemble header ---------------------------------------
table.head_write()
# ------------------------------------------ read value field ---------------------------------------
# ------------------------------------------ read value field --------------------------------------
table.data_rewind()
idx = 0
while table.data_read(): # read next data line of ASCII table
(x,y,z) = location(idx,resolution) # figure out (x,y,z) position from line count
while table.data_read(): # read next data line of ASCII table
(x,y,z) = damask.gridLocation(idx,resolution) # figure out (x,y,z) position from line count
idx += 1
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested curls
values[datatype][label][x,y,z] = numpy.array(
map(float,table.data[column[datatype][label]:
column[datatype][label]+datainfo[datatype]['len']]),'d').reshape(datainfo[datatype]['len']//3,3)
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested curls
values[datatype][label][x,y,z] = np.array(
map(float,table.data[column[datatype][label]:
column[datatype][label]+datainfo[datatype]['len']]),'d') \
.reshape(datainfo[datatype]['len']//3,3)
# ------------------------------------------ process value field ---------------------------------------
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested curls
# ------------------------------------------ process value field -----------------------------------
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested curls
curl[datatype][label] = damask.core.math.curlFFT(dimension,values[datatype][label])
# ------------------------------------------ process data ---------------------------------------
table.data_rewind()
outputAlive = True
idx = 0
while table.data_read(): # read next data line of ASCII table
(x,y,z) = location(idx,resolution) # figure out (x,y,z) position from line count
while outputAlive and table.data_read(): # read next data line of ASCII table
(x,y,z) = damask.gridLocation(idx,resolution) # figure out (x,y,z) position from line count
idx += 1
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested norms
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested norms
table.data_append(list(curl[datatype][label][x,y,z].reshape(datainfo[datatype]['len'])))
table.data_write() # output processed line
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result ---------------------------------------
outputAlive and table.output_flush() # just in case of buffered ASCII table
table.output_flush() # just in case of buffered ASCII table
file['input'].close() # close input ASCII table
file['input'].close() # close input ASCII table (works for stdin)
file['output'].close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
file['output'].close # close output ASCII table
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new