some further improvements on ASCII table handling
This commit is contained in:
parent
0252fea3d7
commit
e7c282a02d
|
@ -87,7 +87,7 @@ for file in files:
|
||||||
if label not in brokenFormula:
|
if label not in brokenFormula:
|
||||||
evaluator[label] = "'" + formula + "'%(" + ','.join(interpolator) + ")"
|
evaluator[label] = "'" + formula + "'%(" + ','.join(interpolator) + ")"
|
||||||
|
|
||||||
# ------------------------------------------ calculate one result to get length of labels ------
|
# ------------------------------------------ calculate one result to get length of labels ---------
|
||||||
table.data_read()
|
table.data_read()
|
||||||
labelLen = {}
|
labelLen = {}
|
||||||
for label in options.labels:
|
for label in options.labels:
|
||||||
|
@ -102,15 +102,12 @@ for file in files:
|
||||||
table.labels_append(label)
|
table.labels_append(label)
|
||||||
else:
|
else:
|
||||||
table.labels_append(['%i_%s'%(i+1,label) for i in xrange(labelLen[label])])
|
table.labels_append(['%i_%s'%(i+1,label) for i in xrange(labelLen[label])])
|
||||||
|
|
||||||
table.head_write()
|
table.head_write()
|
||||||
|
|
||||||
# ------------------------------------------ process data ---------------------------------------
|
# ------------------------------------------ process data ---------------------------------------
|
||||||
outputAlive = True
|
outputAlive = True
|
||||||
table.data_rewind()
|
table.data_rewind()
|
||||||
|
|
||||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||||
|
|
||||||
specials['_row_'] += 1 # count row
|
specials['_row_'] += 1 # count row
|
||||||
for label in options.labels: table.data_append(unravel(eval(eval(evaluator[label]))))
|
for label in options.labels: table.data_append(unravel(eval(eval(evaluator[label]))))
|
||||||
outputAlive = table.data_write() # output processed line
|
outputAlive = table.data_write() # output processed line
|
||||||
|
@ -118,7 +115,7 @@ for file in files:
|
||||||
# ------------------------------------------ output result ---------------------------------------
|
# ------------------------------------------ output result ---------------------------------------
|
||||||
outputAlive and table.output_flush() # just in case of buffered ASCII table
|
outputAlive and table.output_flush() # just in case of buffered ASCII table
|
||||||
|
|
||||||
file['input'].close() # close input ASCII table
|
file['input'].close() # close input ASCII table (works for stdin)
|
||||||
|
file['output'].close() # close output ASCII table (works for stdout)
|
||||||
if file['name'] != 'STDIN':
|
if file['name'] != 'STDIN':
|
||||||
file['output'].close() # close output ASCII table
|
|
||||||
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|
||||||
|
|
|
@ -1,7 +1,8 @@
|
||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# -*- coding: UTF-8 no BOM -*-
|
# -*- coding: UTF-8 no BOM -*-
|
||||||
|
|
||||||
import os,re,sys,math,numpy,string
|
import os,re,sys,math,string
|
||||||
|
import numpy as np
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from optparse import OptionParser
|
from optparse import OptionParser
|
||||||
import damask
|
import damask
|
||||||
|
@ -24,7 +25,6 @@ parser.add_option('-f','--defgrad', dest='defgrad', type='string', metavar='
|
||||||
help='heading of columns containing deformation gradient [%default]')
|
help='heading of columns containing deformation gradient [%default]')
|
||||||
parser.add_option('-p','--stress', dest='stress', type='string', metavar='string', \
|
parser.add_option('-p','--stress', dest='stress', type='string', metavar='string', \
|
||||||
help='heading of columns containing first Piola--Kirchhoff stress [%default]')
|
help='heading of columns containing first Piola--Kirchhoff stress [%default]')
|
||||||
|
|
||||||
parser.set_defaults(defgrad = 'f')
|
parser.set_defaults(defgrad = 'f')
|
||||||
parser.set_defaults(stress = 'p')
|
parser.set_defaults(stress = 'p')
|
||||||
|
|
||||||
|
@ -46,7 +46,6 @@ datainfo = { # lis
|
||||||
datainfo['defgrad']['label'].append(options.defgrad)
|
datainfo['defgrad']['label'].append(options.defgrad)
|
||||||
datainfo['stress']['label'].append(options.stress)
|
datainfo['stress']['label'].append(options.stress)
|
||||||
|
|
||||||
|
|
||||||
# ------------------------------------------ setup file handles ---------------------------------------
|
# ------------------------------------------ setup file handles ---------------------------------------
|
||||||
files = []
|
files = []
|
||||||
if filenames == []:
|
if filenames == []:
|
||||||
|
@ -82,29 +81,27 @@ for file in files:
|
||||||
|
|
||||||
if missingColumns:
|
if missingColumns:
|
||||||
continue
|
continue
|
||||||
|
# ------------------------------------------ assemble header ---------------------------------------
|
||||||
table.labels_append(['%i_Cauchy'%(i+1)
|
table.labels_append(['%i_Cauchy'%(i+1)
|
||||||
for i in xrange(datainfo['stress']['len'])]) # extend ASCII header with new labels
|
for i in xrange(datainfo['stress']['len'])]) # extend ASCII header with new labels
|
||||||
|
|
||||||
# ------------------------------------------ assemble header ---------------------------------------
|
|
||||||
table.head_write()
|
table.head_write()
|
||||||
|
|
||||||
# ------------------------------------------ process data ---------------------------------------
|
# ------------------------------------------ process data ---------------------------------------
|
||||||
outputAlive = True
|
outputAlive = True
|
||||||
|
table.data_rewind()
|
||||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||||
|
F = np.array(map(float,table.data[column['defgrad'][active['defgrad'][0]]:
|
||||||
F = numpy.array(map(float,table.data[column['defgrad'][active['defgrad'][0]]:
|
|
||||||
column['defgrad'][active['defgrad'][0]]+datainfo['defgrad']['len']]),'d').reshape(3,3)
|
column['defgrad'][active['defgrad'][0]]+datainfo['defgrad']['len']]),'d').reshape(3,3)
|
||||||
P = numpy.array(map(float,table.data[column['stress'][active['stress'][0]]:
|
P = np.array(map(float,table.data[column['stress'][active['stress'][0]]:
|
||||||
column['stress'][active['stress'][0]]+datainfo['stress']['len']]),'d').reshape(3,3)
|
column['stress'][active['stress'][0]]+datainfo['stress']['len']]),'d').reshape(3,3)
|
||||||
|
|
||||||
table.data_append(list(1.0/numpy.linalg.det(F)*numpy.dot(P,F.T).reshape(9))) # [Cauchy] = (1/det(F)) * [P].[F_transpose]
|
table.data_append(list(1.0/np.linalg.det(F)*np.dot(P,F.T).reshape(9))) # [Cauchy] = (1/det(F)) * [P].[F_transpose]
|
||||||
outputAlive = table.data_write() # output processed line
|
outputAlive = table.data_write() # output processed line
|
||||||
|
|
||||||
# ------------------------------------------ output result ---------------------------------------
|
# ------------------------------------------ output result ---------------------------------------
|
||||||
table.output_flush() # just in case of buffered ASCII table
|
outputAlive and table.output_flush() # just in case of buffered ASCII table
|
||||||
|
|
||||||
file['input'].close() # close input ASCII table
|
file['input'].close() # close input ASCII table (works for stdin)
|
||||||
|
file['output'].close() # close output ASCII table (works for stdout)
|
||||||
if file['name'] != 'STDIN':
|
if file['name'] != 'STDIN':
|
||||||
file['output'].close() # close output ASCII table
|
|
||||||
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|
||||||
|
|
|
@ -1,174 +1,144 @@
|
||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# -*- coding: UTF-8 no BOM -*-
|
# -*- coding: UTF-8 no BOM -*-
|
||||||
|
|
||||||
import os,re,sys,math,string,numpy,damask
|
import os,re,sys,math,string
|
||||||
from optparse import OptionParser, Option
|
import numpy as np
|
||||||
|
from collections import defaultdict
|
||||||
|
from optparse import OptionParser
|
||||||
|
import damask
|
||||||
|
|
||||||
# -----------------------------
|
scriptID = '$Id$'
|
||||||
class extendableOption(Option):
|
scriptName = scriptID.split()[1]
|
||||||
# -----------------------------
|
|
||||||
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
|
||||||
# taken from online tutorial http://docs.python.org/library/optparse.html
|
|
||||||
|
|
||||||
ACTIONS = Option.ACTIONS + ("extend",)
|
|
||||||
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
|
||||||
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
|
||||||
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
|
||||||
|
|
||||||
def take_action(self, action, dest, opt, value, values, parser):
|
|
||||||
if action == "extend":
|
|
||||||
lvalue = value.split(",")
|
|
||||||
values.ensure_value(dest, []).extend(lvalue)
|
|
||||||
else:
|
|
||||||
Option.take_action(self, action, dest, opt, value, values, parser)
|
|
||||||
|
|
||||||
def location(idx,res):
|
|
||||||
|
|
||||||
return ( idx % res[0], \
|
|
||||||
(idx // res[0]) % res[1], \
|
|
||||||
(idx // res[0] // res[1]) % res[2] )
|
|
||||||
|
|
||||||
def index(location,res):
|
|
||||||
|
|
||||||
return ( location[0] % res[0] + \
|
|
||||||
(location[1] % res[1]) * res[0] + \
|
|
||||||
(location[2] % res[2]) * res[0] * res[1] )
|
|
||||||
# --------------------------------------------------------------------
|
# --------------------------------------------------------------------
|
||||||
# MAIN
|
# MAIN
|
||||||
# --------------------------------------------------------------------
|
# --------------------------------------------------------------------
|
||||||
|
|
||||||
parser = OptionParser(option_class=extendableOption, usage='%prog options file[s]', description = """
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options file[s]', description = """
|
||||||
Add column containing debug information
|
Add column containing debug information
|
||||||
Operates on periodic ordered three-dimensional data sets.
|
Operates on periodic ordered three-dimensional data sets.
|
||||||
|
|
||||||
""" + string.replace('$Id$','\n','\\n')
|
""", version = string.replace(scriptID,'\n','\\n')
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
parser.add_option('--no-shape','-s', dest='noShape', action='store_false', \
|
parser.add_option('--no-shape','-s', dest='noShape', action='store_false', \
|
||||||
help='do not calcuate shape mismatch [%default]')
|
help='do not calcuate shape mismatch [%default]')
|
||||||
parser.add_option('--no-volume','-v', dest='noVolume', action='store_false', \
|
parser.add_option('--no-volume','-v', dest='noVolume', action='store_false', \
|
||||||
help='do not calculate volume mismatch [%default]')
|
help='do not calculate volume mismatch [%default]')
|
||||||
parser.add_option('-c','--coordinates', dest='coords', type='string',\
|
parser.add_option('-c','--coordinates', dest='coords', type='string', metavar='string', \
|
||||||
help='column heading for coordinates [%default]')
|
help='column heading for coordinates [%default]')
|
||||||
parser.add_option('-f','--deformation', dest='F', action='extend', type='string', \
|
parser.add_option('-f','--deformation', dest='defgrad', type='string', metavar='string ', \
|
||||||
help='heading(s) of columns containing deformation tensor values %default')
|
help='column heading for coordinates [%defgrad]')
|
||||||
|
|
||||||
parser.set_defaults(noVolume = False)
|
parser.set_defaults(noVolume = False)
|
||||||
parser.set_defaults(noShape = False)
|
parser.set_defaults(noShape = False)
|
||||||
parser.set_defaults(coords = 'ip')
|
parser.set_defaults(coords = 'ip')
|
||||||
parser.set_defaults(F = 'f')
|
parser.set_defaults(defgrad = 'f')
|
||||||
|
|
||||||
(options,filenames) = parser.parse_args()
|
(options,filenames) = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
datainfo = { # list of requested labels per datatype
|
datainfo = { # list of requested labels per datatype
|
||||||
'F': {'len':9,
|
'defgrad': {'len':9,
|
||||||
'label':[]},
|
'label':[]},
|
||||||
}
|
}
|
||||||
|
|
||||||
if options.F != None: datainfo['F']['label'] += options.F
|
datainfo['defgrad']['label'].append(options.defgrad)
|
||||||
|
|
||||||
# ------------------------------------------ setup file handles ---------------------------------------
|
|
||||||
|
|
||||||
|
# ------------------------------------------ setup file handles -------------------------------------
|
||||||
files = []
|
files = []
|
||||||
if filenames == []:
|
if filenames == []:
|
||||||
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout})
|
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
|
||||||
else:
|
else:
|
||||||
for name in filenames:
|
for name in filenames:
|
||||||
if os.path.exists(name):
|
if os.path.exists(name):
|
||||||
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w')})
|
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
|
||||||
|
|
||||||
# ------------------------------------------ loop over input files ---------------------------------------
|
|
||||||
|
|
||||||
|
#--- loop over input files ------------------------------------------------------------------------
|
||||||
for file in files:
|
for file in files:
|
||||||
if file['name'] != 'STDIN': print file['name'],
|
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
|
||||||
|
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
|
||||||
|
|
||||||
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
||||||
table.head_read() # read ASCII header info
|
table.head_read() # read ASCII header info
|
||||||
table.info_append(string.replace('$Id$','\n','\\n') + \
|
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
|
||||||
'\t' + ' '.join(sys.argv[1:]))
|
|
||||||
|
|
||||||
# --------------- figure out dimension and resolution
|
# --------------- figure out dimension and resolution --------------------------------------------------
|
||||||
try:
|
try:
|
||||||
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
|
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
|
||||||
except ValueError:
|
except ValueError:
|
||||||
print 'no coordinate data found...'
|
file['croak'].write('no coordinate data found...\n'%key)
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
active = defaultdict(list)
|
||||||
|
column = defaultdict(dict)
|
||||||
|
missingColumns = False
|
||||||
|
|
||||||
|
for datatype,info in datainfo.items():
|
||||||
|
for label in info['label']:
|
||||||
|
key = '1_%s'%label
|
||||||
|
if key not in table.labels:
|
||||||
|
file['croak'].write('column %s not found...\n'%key)
|
||||||
|
missingColumns = True
|
||||||
|
else:
|
||||||
|
active[datatype].append(label)
|
||||||
|
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
||||||
|
column = table.labels.index(key)
|
||||||
|
|
||||||
|
if missingColumns:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# --------------- figure out dimension and resolution ---------------------------------------------
|
||||||
grid = [{},{},{}]
|
grid = [{},{},{}]
|
||||||
while table.data_read(): # read next data line of ASCII table
|
while table.data_read(): # read next data line of ASCII table
|
||||||
for j in xrange(3):
|
for j in xrange(3):
|
||||||
grid[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
|
grid[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
|
||||||
res = numpy.array([len(grid[0]),\
|
res = np.array([len(grid[0]),\
|
||||||
len(grid[1]),\
|
len(grid[1]),\
|
||||||
len(grid[2]),],'i') # resolution is number of distinct coordinates found
|
len(grid[2]),],'i') # resolution is number of distinct coordinates found
|
||||||
geomdim = res/numpy.maximum(numpy.ones(3,'d'),res-1.0)* \
|
geomdim = res/np.maximum(np.ones(3,'d'),res-1.0)* \
|
||||||
numpy.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\
|
np.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\
|
||||||
max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\
|
max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\
|
||||||
max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\
|
max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\
|
||||||
],'d') # dimension from bounding box, corrected for cell-centeredness
|
],'d') # dimension from bounding box, corrected for cell-centeredness
|
||||||
if res[2] == 1:
|
if res[2] == 1:
|
||||||
geomdim[2] = min(geomdim[:2]/res[:2])
|
geomdim[2] = min(geomdim[:2]/res[:2])
|
||||||
|
|
||||||
N = res.prod()
|
N = res.prod()
|
||||||
print '\t%s @ %s'%(geomdim,res)
|
|
||||||
|
|
||||||
|
|
||||||
# --------------- figure out columns to process
|
|
||||||
|
|
||||||
key = '1_%s' %options.F
|
|
||||||
if key not in table.labels:
|
|
||||||
sys.stderr.write('column %s not found...\n'%key)
|
|
||||||
else:
|
|
||||||
F = numpy.array([0.0 for i in xrange(N*9)]).reshape([3,3]+list(res))
|
|
||||||
if not options.noShape: table.labels_append(['shapeMismatch(%s)' %options.F])
|
|
||||||
if not options.noVolume: table.labels_append(['volMismatch(%s)'%options.F])
|
|
||||||
column = table.labels.index(key)
|
|
||||||
|
|
||||||
# ------------------------------------------ assemble header ---------------------------------------
|
# ------------------------------------------ assemble header ---------------------------------------
|
||||||
|
if not options.noShape: table.labels_append(['shapeMismatch(%s)' %options.defgrad])
|
||||||
|
if not options.noVolume: table.labels_append(['volMismatch(%s)'%options.defgrad])
|
||||||
table.head_write()
|
table.head_write()
|
||||||
|
|
||||||
# ------------------------------------------ read deformation gradient field -----------------------
|
# ------------------------------------------ read deformation gradient field -----------------------
|
||||||
|
|
||||||
table.data_rewind()
|
table.data_rewind()
|
||||||
|
F = np.array([0.0 for i in xrange(N*9)]).reshape([3,3]+list(res))
|
||||||
idx = 0
|
idx = 0
|
||||||
while table.data_read(): # read next data line of ASCII table
|
(x,y,z) = damask.gridLocation(idx,res) # figure out (x,y,z) position from line count
|
||||||
(x,y,z) = location(idx,res) # figure out (x,y,z) position from line count
|
|
||||||
idx += 1
|
idx += 1
|
||||||
F[0:3,0:3,x,y,z] = numpy.array(map(float,table.data[column:column+9]),'d').reshape(3,3)
|
F[0:3,0:3,x,y,z] = np.array(map(float,table.data[column:column+9]),'d').reshape(3,3)
|
||||||
|
|
||||||
Favg = damask.core.math.tensorAvg(F)
|
Favg = damask.core.math.tensorAvg(F)
|
||||||
|
centres = damask.core.mesh.deformedCoordsFFT(geomdim,F,Favg,[1.0,1.0,1.0])
|
||||||
if (res[0]%2 != 0 or res[1]%2 != 0 or (res[2] != 1 and res[2]%2 !=0)):
|
|
||||||
print 'using linear reconstruction for uneven resolution'
|
|
||||||
centres = damask.core.mesh.deformedCoordsLin(geomdim,F,Favg)
|
|
||||||
else:
|
|
||||||
centres = damask.core.mesh.deformedCoordsFFT(geomdim,F,1.0,Favg)
|
|
||||||
|
|
||||||
nodes = damask.core.mesh.nodesAroundCentres(geomdim,Favg,centres)
|
nodes = damask.core.mesh.nodesAroundCentres(geomdim,Favg,centres)
|
||||||
if not options.noShape: shapeMismatch = damask.core.mesh.shapeMismatch( geomdim,F,nodes,centres)
|
if not options.noShape: shapeMismatch = damask.core.mesh.shapeMismatch( geomdim,F,nodes,centres)
|
||||||
if not options.noVolume: volumeMismatch = damask.core.mesh.volumeMismatch(geomdim,F,nodes)
|
if not options.noVolume: volumeMismatch = damask.core.mesh.volumeMismatch(geomdim,F,nodes)
|
||||||
|
|
||||||
# ------------------------------------------ process data ---------------------------------------
|
# ------------------------------------------ process data ---------------------------------------
|
||||||
|
|
||||||
table.data_rewind()
|
table.data_rewind()
|
||||||
|
outputAlive = True
|
||||||
idx = 0
|
idx = 0
|
||||||
while table.data_read(): # read next data line of ASCII table
|
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||||
(x,y,z) = location(idx,res) # figure out (x,y,z) position from line count
|
(x,y,z) = damask.gridLocation(idx,res ) # figure out (x,y,z) position from line count
|
||||||
idx += 1
|
idx += 1
|
||||||
if not options.noShape: table.data_append( shapeMismatch[x,y,z])
|
if not options.noShape: table.data_append( shapeMismatch[x,y,z])
|
||||||
if not options.noVolume: table.data_append(volumeMismatch[x,y,z])
|
if not options.noVolume: table.data_append(volumeMismatch[x,y,z])
|
||||||
|
|
||||||
table.data_write() # output processed line
|
outputAlive = table.data_write() # output processed line
|
||||||
|
|
||||||
# ------------------------------------------ output result ---------------------------------------
|
# ------------------------------------------ output result ---------------------------------------
|
||||||
|
outputAlive and table.output_flush() # just in case of buffered ASCII table
|
||||||
|
|
||||||
table.output_flush() # just in case of buffered ASCII table
|
file['input'].close() # close input ASCII table (works for stdin)
|
||||||
|
file['output'].close() # close output ASCII table (works for stdout)
|
||||||
file['input'].close() # close input ASCII table
|
|
||||||
if file['name'] != 'STDIN':
|
if file['name'] != 'STDIN':
|
||||||
file['output'].close # close output ASCII table
|
|
||||||
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|
||||||
|
|
|
@ -1,59 +1,33 @@
|
||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# -*- coding: UTF-8 no BOM -*-
|
# -*- coding: UTF-8 no BOM -*-
|
||||||
|
|
||||||
import os,re,sys,math,string,numpy,damask
|
import os,re,sys,math,string
|
||||||
from optparse import OptionParser, Option
|
import numpy as np
|
||||||
|
from optparse import OptionParser
|
||||||
# -----------------------------
|
import damask
|
||||||
class extendableOption(Option):
|
|
||||||
# -----------------------------
|
|
||||||
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
|
||||||
# taken from online tutorial http://docs.python.org/library/optparse.html
|
|
||||||
|
|
||||||
ACTIONS = Option.ACTIONS + ("extend",)
|
|
||||||
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
|
||||||
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
|
||||||
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
|
||||||
|
|
||||||
def take_action(self, action, dest, opt, value, values, parser):
|
|
||||||
if action == "extend":
|
|
||||||
lvalue = value.split(",")
|
|
||||||
values.ensure_value(dest, []).extend(lvalue)
|
|
||||||
else:
|
|
||||||
Option.take_action(self, action, dest, opt, value, values, parser)
|
|
||||||
|
|
||||||
def location(idx,res):
|
|
||||||
return ( idx % res[0], \
|
|
||||||
( idx // res[0]) % res[1], \
|
|
||||||
( idx // res[0] // res[1]) % res[2] )
|
|
||||||
|
|
||||||
def index(location,res):
|
|
||||||
return ( location[0] % res[0] + \
|
|
||||||
( location[1] % res[1]) * res[0] + \
|
|
||||||
( location[2] % res[2]) * res[1] * res[0] )
|
|
||||||
|
|
||||||
|
|
||||||
|
scriptID = '$Id$'
|
||||||
|
scriptName = scriptID.split()[1]
|
||||||
|
|
||||||
# --------------------------------------------------------------------
|
# --------------------------------------------------------------------
|
||||||
# MAIN
|
# MAIN
|
||||||
# --------------------------------------------------------------------
|
# --------------------------------------------------------------------
|
||||||
|
|
||||||
parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||||||
Add column(s) containing curl of requested column(s).
|
Add column(s) containing curl of requested column(s).
|
||||||
Operates on periodic ordered three-dimensional data sets.
|
Operates on periodic ordered three-dimensional data sets.
|
||||||
Deals with both vector- and tensor-valued fields.
|
Deals with both vector- and tensor-valued fields.
|
||||||
|
|
||||||
""" + string.replace('$Id$','\n','\\n')
|
""", version=string.replace('$Id$','\n','\\n')
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
parser.add_option('-c','--coordinates', dest='coords', type='string',\
|
parser.add_option('-c','--coordinates', dest='coords', type='string', metavar='string', \
|
||||||
help='column heading for coordinates [%default]')
|
help='column heading for coordinates [%default]')
|
||||||
parser.add_option('-v','--vector', dest='vector', action='extend', type='string', \
|
parser.add_option('-v','--vector', dest='vector', action='extend', type='string', metavar='<string LIST>', \
|
||||||
help='heading of columns containing vector field values')
|
help='heading of columns containing vector field values')
|
||||||
parser.add_option('-t','--tensor', dest='tensor', action='extend', type='string', \
|
parser.add_option('-t','--tensor', dest='tensor', action='extend', type='string', metavar='<string LIST>', \
|
||||||
help='heading of columns containing tensor field values')
|
help='heading of columns containing tensor field values')
|
||||||
|
|
||||||
parser.set_defaults(coords = 'ip')
|
parser.set_defaults(coords = 'ip')
|
||||||
parser.set_defaults(vector = [])
|
parser.set_defaults(vector = [])
|
||||||
parser.set_defaults(tensor = [])
|
parser.set_defaults(tensor = [])
|
||||||
|
@ -73,43 +47,40 @@ datainfo = { # lis
|
||||||
if options.vector != None: datainfo['vector']['label'] += options.vector
|
if options.vector != None: datainfo['vector']['label'] += options.vector
|
||||||
if options.tensor != None: datainfo['tensor']['label'] += options.tensor
|
if options.tensor != None: datainfo['tensor']['label'] += options.tensor
|
||||||
|
|
||||||
# ------------------------------------------ setup file handles ---------------------------------------
|
# ------------------------------------------ setup file handles ------------------------------------
|
||||||
|
|
||||||
files = []
|
files = []
|
||||||
if filenames == []:
|
if filenames == []:
|
||||||
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout})
|
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
|
||||||
else:
|
else:
|
||||||
for name in filenames:
|
for name in filenames:
|
||||||
if os.path.exists(name):
|
if os.path.exists(name):
|
||||||
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w')})
|
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
|
||||||
|
|
||||||
|
|
||||||
# ------------------------------------------ loop over input files ---------------------------------------
|
|
||||||
|
|
||||||
|
#--- loop over input files ------------------------------------------------------------------------
|
||||||
for file in files:
|
for file in files:
|
||||||
if file['name'] != 'STDIN': print file['name'],
|
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
|
||||||
|
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
|
||||||
|
|
||||||
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
||||||
table.head_read() # read ASCII header info
|
table.head_read() # read ASCII header info
|
||||||
table.info_append(string.replace('$Id$','\n','\\n') + \
|
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
|
||||||
'\t' + ' '.join(sys.argv[1:]))
|
|
||||||
|
|
||||||
# --------------- figure out dimension and resolution
|
# --------------- figure out dimension and resolution ----------------------------------------------
|
||||||
try:
|
try:
|
||||||
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
|
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
|
||||||
except ValueError:
|
except ValueError:
|
||||||
print 'no coordinate data found...'
|
file['croak'].write('no coordinate data found...\n'%key)
|
||||||
continue
|
continue
|
||||||
|
|
||||||
grid = [{},{},{}]
|
grid = [{},{},{}]
|
||||||
while table.data_read(): # read next data line of ASCII table
|
while table.data_read(): # read next data line of ASCII table
|
||||||
for j in xrange(3):
|
for j in xrange(3):
|
||||||
grid[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
|
grid[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
|
||||||
resolution = numpy.array([len(grid[0]),\
|
resolution = np.array([len(grid[0]),\
|
||||||
len(grid[1]),\
|
len(grid[1]),\
|
||||||
len(grid[2]),],'i') # resolution is number of distinct coordinates found
|
len(grid[2]),],'i') # resolution is number of distinct coordinates found
|
||||||
dimension = resolution/numpy.maximum(numpy.ones(3,'d'),resolution-1.0)* \
|
dimension = resolution/np.maximum(np.ones(3,'d'),resolution-1.0)* \
|
||||||
numpy.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\
|
np.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\
|
||||||
max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\
|
max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\
|
||||||
max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\
|
max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\
|
||||||
],'d') # dimension from bounding box, corrected for cell-centeredness
|
],'d') # dimension from bounding box, corrected for cell-centeredness
|
||||||
|
@ -117,8 +88,6 @@ for file in files:
|
||||||
dimension[2] = min(dimension[:2]/resolution[:2])
|
dimension[2] = min(dimension[:2]/resolution[:2])
|
||||||
|
|
||||||
N = resolution.prod()
|
N = resolution.prod()
|
||||||
print '\t%s @ %s'%(dimension,resolution)
|
|
||||||
|
|
||||||
|
|
||||||
# --------------- figure out columns to process
|
# --------------- figure out columns to process
|
||||||
active = {}
|
active = {}
|
||||||
|
@ -141,58 +110,53 @@ for file in files:
|
||||||
if datatype not in curl: curl[datatype] = {}
|
if datatype not in curl: curl[datatype] = {}
|
||||||
active[datatype].append(label)
|
active[datatype].append(label)
|
||||||
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
||||||
values[datatype][label] = numpy.array([0.0 for i in xrange(N*datainfo[datatype]['len'])]).\
|
values[datatype][label] = np.array([0.0 for i in xrange(N*datainfo[datatype]['len'])]).\
|
||||||
reshape(list(resolution)+[datainfo[datatype]['len']//3,3])
|
reshape(list(resolution)+[datainfo[datatype]['len']//3,3])
|
||||||
curl[datatype][label] = numpy.array([0.0 for i in xrange(N*datainfo[datatype]['len'])]).\
|
curl[datatype][label] = np.array([0.0 for i in xrange(N*datainfo[datatype]['len'])]).\
|
||||||
reshape(list(resolution)+[datainfo[datatype]['len']//3,3])
|
reshape(list(resolution)+[datainfo[datatype]['len']//3,3])
|
||||||
table.labels_append(['%i_curlFFT(%s)'%(i+1,label)
|
table.labels_append(['%i_curlFFT(%s)'%(i+1,label)
|
||||||
for i in xrange(datainfo[datatype]['len'])]) # extend ASCII header with new labels
|
for i in xrange(datainfo[datatype]['len'])]) # extend ASCII header with new labels
|
||||||
|
|
||||||
|
|
||||||
# ------------------------------------------ assemble header ---------------------------------------
|
# ------------------------------------------ assemble header ---------------------------------------
|
||||||
|
|
||||||
table.head_write()
|
table.head_write()
|
||||||
|
|
||||||
# ------------------------------------------ read value field ---------------------------------------
|
# ------------------------------------------ read value field --------------------------------------
|
||||||
|
|
||||||
table.data_rewind()
|
table.data_rewind()
|
||||||
|
|
||||||
idx = 0
|
idx = 0
|
||||||
while table.data_read(): # read next data line of ASCII table
|
while table.data_read(): # read next data line of ASCII table
|
||||||
(x,y,z) = location(idx,resolution) # figure out (x,y,z) position from line count
|
(x,y,z) = damask.gridLocation(idx,resolution) # figure out (x,y,z) position from line count
|
||||||
idx += 1
|
idx += 1
|
||||||
for datatype,labels in active.items(): # loop over vector,tensor
|
for datatype,labels in active.items(): # loop over vector,tensor
|
||||||
for label in labels: # loop over all requested curls
|
for label in labels: # loop over all requested curls
|
||||||
values[datatype][label][x,y,z] = numpy.array(
|
values[datatype][label][x,y,z] = np.array(
|
||||||
map(float,table.data[column[datatype][label]:
|
map(float,table.data[column[datatype][label]:
|
||||||
column[datatype][label]+datainfo[datatype]['len']]),'d').reshape(datainfo[datatype]['len']//3,3)
|
column[datatype][label]+datainfo[datatype]['len']]),'d') \
|
||||||
|
.reshape(datainfo[datatype]['len']//3,3)
|
||||||
# ------------------------------------------ process value field ---------------------------------------
|
|
||||||
|
|
||||||
|
# ------------------------------------------ process value field -----------------------------------
|
||||||
for datatype,labels in active.items(): # loop over vector,tensor
|
for datatype,labels in active.items(): # loop over vector,tensor
|
||||||
for label in labels: # loop over all requested curls
|
for label in labels: # loop over all requested curls
|
||||||
curl[datatype][label] = damask.core.math.curlFFT(dimension,values[datatype][label])
|
curl[datatype][label] = damask.core.math.curlFFT(dimension,values[datatype][label])
|
||||||
|
|
||||||
# ------------------------------------------ process data ---------------------------------------
|
# ------------------------------------------ process data ---------------------------------------
|
||||||
|
|
||||||
table.data_rewind()
|
table.data_rewind()
|
||||||
|
outputAlive = True
|
||||||
idx = 0
|
idx = 0
|
||||||
while table.data_read(): # read next data line of ASCII table
|
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||||
(x,y,z) = location(idx,resolution) # figure out (x,y,z) position from line count
|
(x,y,z) = damask.gridLocation(idx,resolution) # figure out (x,y,z) position from line count
|
||||||
idx += 1
|
idx += 1
|
||||||
|
|
||||||
for datatype,labels in active.items(): # loop over vector,tensor
|
for datatype,labels in active.items(): # loop over vector,tensor
|
||||||
for label in labels: # loop over all requested norms
|
for label in labels: # loop over all requested norms
|
||||||
table.data_append(list(curl[datatype][label][x,y,z].reshape(datainfo[datatype]['len'])))
|
table.data_append(list(curl[datatype][label][x,y,z].reshape(datainfo[datatype]['len'])))
|
||||||
|
|
||||||
table.data_write() # output processed line
|
outputAlive = table.data_write() # output processed line
|
||||||
|
|
||||||
|
|
||||||
# ------------------------------------------ output result ---------------------------------------
|
# ------------------------------------------ output result ---------------------------------------
|
||||||
|
outputAlive and table.output_flush() # just in case of buffered ASCII table
|
||||||
|
|
||||||
table.output_flush() # just in case of buffered ASCII table
|
file['input'].close() # close input ASCII table (works for stdin)
|
||||||
|
file['output'].close() # close output ASCII table (works for stdout)
|
||||||
file['input'].close() # close input ASCII table
|
|
||||||
if file['name'] != 'STDIN':
|
if file['name'] != 'STDIN':
|
||||||
file['output'].close # close output ASCII table
|
|
||||||
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|
||||||
|
|
Loading…
Reference in New Issue