Merge remote-tracking branch 'origin/development' into Fortran-simplifications

This commit is contained in:
Martin Diehl 2020-09-19 08:30:22 +02:00
commit e639fa981d
5 changed files with 119 additions and 3 deletions

@ -1 +1 @@
Subproject commit 65ec74c07052e77f35a4b5e80bf110aff1f5ae61 Subproject commit 555f3e01f2b5cf43ade1bd48423b890adca21771

View File

@ -1 +1 @@
v3.0.0-alpha-216-gb51a1b7b v3.0.0-alpha-233-g190f8a82

View File

@ -438,6 +438,7 @@ class Rotation:
if np.any(ax[...,3] < 0.0) or np.any(ax[...,3] > np.pi): if np.any(ax[...,3] < 0.0) or np.any(ax[...,3] > np.pi):
raise ValueError('Axis angle rotation angle outside of [0..π].') raise ValueError('Axis angle rotation angle outside of [0..π].')
if not np.all(np.isclose(np.linalg.norm(ax[...,0:3],axis=-1), 1.0)): if not np.all(np.isclose(np.linalg.norm(ax[...,0:3],axis=-1), 1.0)):
print(np.linalg.norm(ax[...,0:3],axis=-1))
raise ValueError('Axis angle rotation axis is not of unit length.') raise ValueError('Axis angle rotation axis is not of unit length.')
return Rotation(Rotation._ax2qu(ax)) return Rotation(Rotation._ax2qu(ax))
@ -652,6 +653,84 @@ class Rotation:
asAxisAngle = as_axis_angle asAxisAngle = as_axis_angle
__mul__ = __matmul__ __mul__ = __matmul__
@staticmethod
def from_spherical_component(center,sigma,N=500,degrees=True,seed=None):
"""
Calculate set of rotations with Gaussian distribution around center.
Parameters
----------
center : Rotation
Central Rotation.
sigma : float
Standard deviation of (Gaussian) misorientation distribution.
N : int, optional
Number of samples, defaults to 500.
degrees : boolean, optional
sigma is given in degrees.
seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy
will be pulled from the OS.
"""
rng = np.random.default_rng(seed)
sigma = np.radians(sigma) if degrees else sigma
u,Theta = (rng.random((N,2)) * 2.0 * np.array([1,np.pi]) - np.array([1.0, 0])).T
omega = abs(rng.normal(scale=sigma,size=N))
p = np.column_stack([np.sqrt(1-u**2)*np.cos(Theta),
np.sqrt(1-u**2)*np.sin(Theta),
u, omega])
return Rotation.from_axis_angle(p) @ center
@staticmethod
def from_fiber_component(alpha,beta,sigma=0.0,N=500,degrees=True,seed=None):
"""
Calculate set of rotations with Gaussian distribution around direction.
Parameters
----------
alpha : numpy.ndarray of size 2
Polar coordinates (phi from x,theta from z) of fiber direction in crystal frame.
beta : numpy.ndarray of size 2
Polar coordinates (phi from x,theta from z) of fiber direction in sample frame.
sigma : float, optional
Standard deviation of (Gaussian) misorientation distribution.
Defaults to 0.
N : int, optional
Number of samples, defaults to 500.
degrees : boolean, optional
sigma, alpha, and beta are given in degrees.
seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy
will be pulled from the OS.
"""
rng = np.random.default_rng(seed)
sigma_,alpha_,beta_ = map(np.radians,(sigma,alpha,beta)) if degrees else (sigma,alpha,beta)
d_cr = np.array([np.sin(alpha_[0])*np.cos(alpha_[1]), np.sin(alpha_[0])*np.sin(alpha_[1]), np.cos(alpha_[0])])
d_lab = np.array([np.sin( beta_[0])*np.cos( beta_[1]), np.sin( beta_[0])*np.sin( beta_[1]), np.cos( beta_[0])])
ax_align = np.append(np.cross(d_lab,d_cr), np.arccos(np.dot(d_lab,d_cr)))
if np.isclose(ax_align[3],0.0): ax_align[:3] = np.array([1,0,0])
R_align = Rotation.from_axis_angle(ax_align if ax_align[3] > 0.0 else -ax_align,normalize=True) # rotate fiber axis from sample to crystal frame
u,Theta = (rng.random((N,2)) * 2.0 * np.array([1,np.pi]) - np.array([1.0, 0])).T
omega = abs(rng.normal(scale=sigma_,size=N))
p = np.column_stack([np.sqrt(1-u**2)*np.cos(Theta),
np.sqrt(1-u**2)*np.sin(Theta),
u, omega])
p[:,:3] = np.einsum('ij,...j',np.eye(3)-np.outer(d_lab,d_lab),p[:,:3]) # remove component along fiber axis
f = np.column_stack((np.broadcast_to(d_lab,(N,3)),rng.random(N)*np.pi))
f[::2,:3] *= -1 # flip half the rotation axes to negative sense
return R_align.broadcast_to(N) \
@ Rotation.from_axis_angle(p,normalize=True) \
@ Rotation.from_axis_angle(f)
#################################################################################################### ####################################################################################################
# Code below available according to the following conditions on https://github.com/MarDiehl/3Drotations # Code below available according to the following conditions on https://github.com/MarDiehl/3Drotations
#################################################################################################### ####################################################################################################

View File

@ -2,6 +2,7 @@ import os
import pytest import pytest
import numpy as np import numpy as np
from scipy import stats
from damask import Rotation from damask import Rotation
from damask import _rotation from damask import _rotation
@ -920,3 +921,39 @@ class TestRotation:
R_2 = Rotation.from_axis_angle([0,0,1,angle],degrees=True) R_2 = Rotation.from_axis_angle([0,0,1,angle],degrees=True)
avg_angle = R_1.average(R_2).as_axis_angle(degrees=True,pair=True)[1] avg_angle = R_1.average(R_2).as_axis_angle(degrees=True,pair=True)[1]
assert np.isclose(avg_angle,10+(angle-10)/2.) assert np.isclose(avg_angle,10+(angle-10)/2.)
@pytest.mark.parametrize('sigma',[5,10,15,20])
@pytest.mark.parametrize('N',[1000,10000,100000])
def test_spherical_component(self,N,sigma):
c = Rotation.from_random()
o = Rotation.from_spherical_component(c,sigma,N)
_, angles = c.misorientation(o).as_axis_angle(pair=True,degrees=True)
angles[::2] *= -1 # flip angle for every second to symmetrize distribution
p = stats.normaltest(angles)[1]
sigma_out = np.std(angles)
print(f'\np: {p}, sigma ratio {sigma/sigma_out}')
assert (.9 < sigma/sigma_out < 1.1) and p > 0.001
@pytest.mark.parametrize('sigma',[5,10,15,20])
@pytest.mark.parametrize('N',[1000,10000,100000])
def test_from_fiber_component(self,N,sigma):
"""https://en.wikipedia.org/wiki/Full_width_at_half_maximum."""
alpha = np.random.random(2)*np.pi
beta = np.random.random(2)*np.pi
f_in_C = np.array([np.sin(alpha[0])*np.cos(alpha[1]), np.sin(alpha[0])*np.sin(alpha[1]), np.cos(alpha[0])])
f_in_S = np.array([np.sin(beta[0] )*np.cos(beta[1] ), np.sin(beta[0] )*np.sin(beta[1] ), np.cos(beta[0] )])
ax = np.append(np.cross(f_in_C,f_in_S), - np.arccos(np.dot(f_in_C,f_in_S)))
n = Rotation.from_axis_angle(ax if ax[3] > 0.0 else ax*-1.0 ,normalize=True) # rotation to align fiber axis in crystal and sample system
o = Rotation.from_fiber_component(alpha,beta,np.radians(sigma),N,False)
angles = np.arccos(np.clip(np.dot(o@np.broadcast_to(f_in_S,(N,3)),n@f_in_S),-1,1))
dist = np.array(angles) * (np.random.randint(0,2,N)*2-1)
p = stats.normaltest(dist)[1]
sigma_out = np.degrees(np.std(dist))
print(f'\np: {p}, sigma ratio {sigma/sigma_out}')
assert (.9 < sigma/sigma_out < 1.1) and p > 0.001

View File

@ -723,7 +723,7 @@ subroutine inputRead_microstructure(microstructureAt,&
endif endif
enddo enddo
if(any(microstructureAt < 1)) call IO_error(190) if(any(microstructureAt < 1)) call IO_error(180)
end subroutine inputRead_microstructure end subroutine inputRead_microstructure