sorted alphabetically

This commit is contained in:
Martin Diehl 2020-02-15 14:10:16 +01:00
parent 79533b075e
commit e46395be41
2 changed files with 220 additions and 223 deletions

View File

@ -21,6 +21,106 @@ def Cauchy(F,P):
return symmetric(sigma) return symmetric(sigma)
def deviatoric_part(x):
"""
Return deviatoric part of a tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the deviatoric part is computed.
"""
return x - np.eye(3)*spherical_part(x) if np.shape(x) == (3,3) else \
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x))
def eigenvalues(x):
"""
Return the eigenvalues, i.e. principal components, of a symmetric tensor.
The eigenvalues are sorted in ascending order, each repeated according to
its multiplicity.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Symmetric tensor of which the eigenvalues are computed.
"""
return np.linalg.eigvalsh(symmetric(x))
def eigenvectors(x):
"""
Return eigenvectors of a symmetric tensor.
The eigenvalues are sorted in ascending order of their associated eigenvalues.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Symmetric tensor of which the eigenvectors are computed.
"""
(u,v) = np.linalg.eigh(symmetric(x))
return v
def left_stretch(x):
"""
Return the left stretch of a tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the left stretch is computed.
"""
return __polar_decomposition(x,'V')[0]
def maximum_shear(x):
"""
Return the maximum shear component of a symmetric tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Symmetric tensor of which the maximum shear is computed.
"""
w = eigenvalues(x)
return (w[0] - w[2])*0.5 if np.shape(x) == (3,3) else \
(w[:,0] - w[:,2])*0.5
def Mises_strain(epsilon):
"""
Return the Mises equivalent of a strain tensor.
Parameters
----------
epsilon : numpy.array of shape (:,3,3) or (3,3)
Symmetric strain tensor of which the von Mises equivalent is computed.
"""
return __Mises(epsilon,2.0/3.0)
def Mises_stress(sigma):
"""
Return the Mises equivalent of a stress tensor.
Parameters
----------
sigma : numpy.array of shape (:,3,3) or (3,3)
Symmetric stress tensor of which the von Mises equivalent is computed.
"""
return __Mises(sigma,3.0/2.0)
def PK2(F,P): def PK2(F,P):
""" """
Return 2. Piola-Kirchhoff stress calculated from 1. Piola-Kirchhoff stress and deformation gradient. Return 2. Piola-Kirchhoff stress calculated from 1. Piola-Kirchhoff stress and deformation gradient.
@ -39,6 +139,54 @@ def PK2(F,P):
S = np.einsum('ijk,ikl->ijl',np.linalg.inv(F),P) S = np.einsum('ijk,ikl->ijl',np.linalg.inv(F),P)
return symmetric(S) return symmetric(S)
def right_stretch(x):
"""
Return the right stretch of a tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the right stretch is computed.
"""
return __polar_decomposition(x,'U')[0]
def rotational_part(x):
"""
Return the rotational part of a tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the rotational part is computed.
"""
return __polar_decomposition(x,'R')[0]
def spherical_part(x,tensor=False):
"""
Return spherical (hydrostatic) part of a tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the hydrostatic part is computed.
tensor : bool, optional
Map spherical part onto identity tensor. Default is false
"""
if x.shape == (3,3):
sph = np.trace(x)/3.0
return sph if not tensor else np.eye(3)*sph
else:
sph = np.trace(x,axis1=1,axis2=2)/3.0
if not tensor:
return sph
else:
return np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),(x.shape[0],3,3)),sph)
def strain_tensor(F,t,m): def strain_tensor(F,t,m):
""" """
@ -78,73 +226,6 @@ def strain_tensor(F,t,m):
eps eps
def deviatoric_part(x):
"""
Return deviatoric part of a tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the deviatoric part is computed.
"""
return x - np.eye(3)*spherical_part(x) if np.shape(x) == (3,3) else \
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x))
def spherical_part(x,tensor=False):
"""
Return spherical (hydrostatic) part of a tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the hydrostatic part is computed.
tensor : bool, optional
Map spherical part onto identity tensor. Default is false
"""
if x.shape == (3,3):
sph = np.trace(x)/3.0
return sph if not tensor else np.eye(3)*sph
else:
sph = np.trace(x,axis1=1,axis2=2)/3.0
if not tensor:
return sph
else:
return np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),(x.shape[0],3,3)),sph)
def Mises_stress(sigma):
"""
Return the Mises equivalent of a stress tensor.
Parameters
----------
sigma : numpy.array of shape (:,3,3) or (3,3)
Symmetric stress tensor of which the von Mises equivalent is computed.
"""
s = deviatoric_part(sigma)
return np.sqrt(3.0/2.0*(np.sum(s**2.0))) if np.shape(sigma) == (3,3) else \
np.sqrt(3.0/2.0*np.einsum('ijk->i',s**2.0))
def Mises_strain(epsilon):
"""
Return the Mises equivalent of a strain tensor.
Parameters
----------
epsilon : numpy.array of shape (:,3,3) or (3,3)
Symmetric strain tensor of which the von Mises equivalent is computed.
"""
s = deviatoric_part(epsilon)
return np.sqrt(2.0/3.0*(np.sum(s**2.0))) if np.shape(epsilon) == (3,3) else \
np.sqrt(2.0/3.0*np.einsum('ijk->i',s**2.0))
def symmetric(x): def symmetric(x):
""" """
Return the symmetrized tensor. Return the symmetrized tensor.
@ -158,53 +239,6 @@ def symmetric(x):
return (x+transpose(x))*0.5 return (x+transpose(x))*0.5
def maximum_shear(x):
"""
Return the maximum shear component of a symmetric tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Symmetric tensor of which the maximum shear is computed.
"""
w = eigenvalues(x)
return (w[0] - w[2])*0.5 if np.shape(x) == (3,3) else \
(w[:,0] - w[:,2])*0.5
def eigenvalues(x):
"""
Return the eigenvalues, i.e. principal components, of a symmetric tensor.
The eigenvalues are sorted in ascending order, each repeated according to
its multiplicity.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Symmetric tensor of which the eigenvalues are computed.
"""
return np.linalg.eigvalsh(symmetric(x))
def eigenvectors(x):
"""
Return eigenvectors of a symmetric tensor.
The eigenvalues are sorted in ascending order of their associated eigenvalues.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Symmetric tensor of which the eigenvectors are computed.
"""
(u,v) = np.linalg.eigh(symmetric(x))
return v
def transpose(x): def transpose(x):
""" """
Return the transpose of a tensor. Return the transpose of a tensor.
@ -219,45 +253,6 @@ def transpose(x):
np.transpose(x,(0,2,1)) np.transpose(x,(0,2,1))
def rotational_part(x):
"""
Return the rotational part of a tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the rotational part is computed.
"""
return __polar_decomposition(x,'R')[0]
def left_stretch(x):
"""
Return the left stretch of a tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the left stretch is computed.
"""
return __polar_decomposition(x,'V')[0]
def right_stretch(x):
"""
Return the right stretch of a tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Tensor of which the right stretch is computed.
"""
return __polar_decomposition(x,'U')[0]
def __polar_decomposition(x,requested): def __polar_decomposition(x,requested):
""" """
Singular value decomposition. Singular value decomposition.
@ -284,3 +279,19 @@ def __polar_decomposition(x,requested):
output.append(np.dot(R.T,x) if np.shape(x) == (3,3) else np.einsum('ikj,ikl->ijl',R,x)) output.append(np.dot(R.T,x) if np.shape(x) == (3,3) else np.einsum('ikj,ikl->ijl',R,x))
return tuple(output) return tuple(output)
def __Mises(x,s):
"""
Base equation for Mises equivalent of a stres or strain tensor.
Parameters
----------
x : numpy.array of shape (:,3,3) or (3,3)
Symmetric tensor of which the von Mises equivalent is computed.
s : float
Scaling factor (2/3 for strain, 3/2 for stress).
"""
d = deviatoric_part(x)
return np.sqrt(s*(np.sum(d**2.0))) if np.shape(x) == (3,3) else \
np.sqrt(s*np.einsum('ijk->i',d**2.0))

View File

@ -13,6 +13,61 @@ class TestMechanics:
assert np.allclose(mechanics.Cauchy(F,P)[self.c], assert np.allclose(mechanics.Cauchy(F,P)[self.c],
mechanics.Cauchy(F[self.c],P[self.c])) mechanics.Cauchy(F[self.c],P[self.c]))
def test_vectorize_deviatoric_part(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.deviatoric_part(x)[self.c],
mechanics.deviatoric_part(x[self.c]))
def test_vectorize_eigenvalues(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.eigenvalues(x)[self.c],
mechanics.eigenvalues(x[self.c]))
def test_vectorize_eigenvectors(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.eigenvectors(x)[self.c],
mechanics.eigenvectors(x[self.c]))
def test_vectorize_left_stretch(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.left_stretch(x)[self.c],
mechanics.left_stretch(x[self.c]))
def test_vectorize_maximum_shear(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.maximum_shear(x)[self.c],
mechanics.maximum_shear(x[self.c]))
def test_vectorize_Mises_strain(self):
epsilon = np.random.random((self.n,3,3))
assert np.allclose(mechanics.Mises_strain(epsilon)[self.c],
mechanics.Mises_strain(epsilon[self.c]))
def test_vectorize_Mises_stress(self):
sigma = np.random.random((self.n,3,3))
assert np.allclose(mechanics.Mises_stress(sigma)[self.c],
mechanics.Mises_stress(sigma[self.c]))
def test_vectorize_PK2(self):
F = np.random.random((self.n,3,3))
P = np.random.random((self.n,3,3))
assert np.allclose(mechanics.PK2(F,P)[self.c],
mechanics.PK2(F[self.c],P[self.c]))
def test_vectorize_right_stretch(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.right_stretch(x)[self.c],
mechanics.right_stretch(x[self.c]))
def test_vectorize_rotational_part(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.rotational_part(x)[self.c],
mechanics.rotational_part(x[self.c]))
def test_vectorize_spherical_part(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.spherical_part(x,True)[self.c],
mechanics.spherical_part(x[self.c],True))
def test_vectorize_strain_tensor(self): def test_vectorize_strain_tensor(self):
F = np.random.random((self.n,3,3)) F = np.random.random((self.n,3,3))
@ -21,92 +76,24 @@ class TestMechanics:
assert np.allclose(mechanics.strain_tensor(F,t,m)[self.c], assert np.allclose(mechanics.strain_tensor(F,t,m)[self.c],
mechanics.strain_tensor(F[self.c],t,m)) mechanics.strain_tensor(F[self.c],t,m))
def test_vectorize_deviatoric_part(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.deviatoric_part(x)[self.c],
mechanics.deviatoric_part(x[self.c]))
def test_vectorize_spherical_part(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.spherical_part(x,True)[self.c],
mechanics.spherical_part(x[self.c],True))
def test_vectorize_Mises_stress(self):
sigma = np.random.random((self.n,3,3))
assert np.allclose(mechanics.Mises_stress(sigma)[self.c],
mechanics.Mises_stress(sigma[self.c]))
def test_vectorize_Mises_strain(self):
epsilon = np.random.random((self.n,3,3))
assert np.allclose(mechanics.Mises_strain(epsilon)[self.c],
mechanics.Mises_strain(epsilon[self.c]))
def test_vectorize_symmetric(self): def test_vectorize_symmetric(self):
x = np.random.random((self.n,3,3)) x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.symmetric(x)[self.c], assert np.allclose(mechanics.symmetric(x)[self.c],
mechanics.symmetric(x[self.c])) mechanics.symmetric(x[self.c]))
def test_vectorize_maximum_shear(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.maximum_shear(x)[self.c],
mechanics.maximum_shear(x[self.c]))
def test_vectorize_eigenvalues(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.eigenvalues(x)[self.c],
mechanics.eigenvalues(x[self.c]))
def test_vectorize_eigenvectors(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.eigenvectors(x)[self.c],
mechanics.eigenvectors(x[self.c]))
def test_vectorize_PK2(self):
F = np.random.random((self.n,3,3))
P = np.random.random((self.n,3,3))
assert np.allclose(mechanics.PK2(F,P)[self.c],
mechanics.PK2(F[self.c],P[self.c]))
def test_vectorize_transpose(self): def test_vectorize_transpose(self):
x = np.random.random((self.n,3,3)) x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.transpose(x)[self.c], assert np.allclose(mechanics.transpose(x)[self.c],
mechanics.transpose(x[self.c])) mechanics.transpose(x[self.c]))
def test_vectorize_rotational_part(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.rotational_part(x)[self.c],
mechanics.rotational_part(x[self.c]))
def test_vectorize_left_stretch(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.left_stretch(x)[self.c],
mechanics.left_stretch(x[self.c]))
def test_vectorize_right_stretch(self):
x = np.random.random((self.n,3,3))
assert np.allclose(mechanics.right_stretch(x)[self.c],
mechanics.right_stretch(x[self.c]))
def test_Cauchy(self): def test_Cauchy(self):
"""Ensure Cauchy stress is symmetrized 1. Piola-Kirchhoff stress for no deformation.""" """Ensure Cauchy stress is symmetrized 1. Piola-Kirchhoff stress for no deformation."""
P = np.random.random((self.n,3,3)) P = np.random.random((self.n,3,3))
assert np.allclose(mechanics.Cauchy(np.broadcast_to(np.eye(3),(self.n,3,3)),P), assert np.allclose(mechanics.Cauchy(np.broadcast_to(np.eye(3),(self.n,3,3)),P),
mechanics.symmetric(P)) mechanics.symmetric(P))
def test_polar_decomposition(self): def test_polar_decomposition(self):
"""F = RU = VR.""" """F = RU = VR."""
F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.random((self.n,3,3)) F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.random((self.n,3,3))
@ -216,7 +203,6 @@ class TestMechanics:
for i in range(3): for i in range(3):
assert np.allclose(np.linalg.det(A[s]-lambd[s,i]*np.eye(3)),.0) assert np.allclose(np.linalg.det(A[s]-lambd[s,i]*np.eye(3)),.0)
def test_eigenvalues_and_vectors(self): def test_eigenvalues_and_vectors(self):
"""Ensure that eigenvalues and -vectors are the solution to the characteristic polynomial.""" """Ensure that eigenvalues and -vectors are the solution to the characteristic polynomial."""
A = mechanics.symmetric(np.random.random((self.n,3,3))) A = mechanics.symmetric(np.random.random((self.n,3,3)))