sorted alphabetically
This commit is contained in:
parent
79533b075e
commit
e46395be41
|
@ -21,6 +21,106 @@ def Cauchy(F,P):
|
||||||
return symmetric(sigma)
|
return symmetric(sigma)
|
||||||
|
|
||||||
|
|
||||||
|
def deviatoric_part(x):
|
||||||
|
"""
|
||||||
|
Return deviatoric part of a tensor.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
x : numpy.array of shape (:,3,3) or (3,3)
|
||||||
|
Tensor of which the deviatoric part is computed.
|
||||||
|
|
||||||
|
"""
|
||||||
|
return x - np.eye(3)*spherical_part(x) if np.shape(x) == (3,3) else \
|
||||||
|
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x))
|
||||||
|
|
||||||
|
|
||||||
|
def eigenvalues(x):
|
||||||
|
"""
|
||||||
|
Return the eigenvalues, i.e. principal components, of a symmetric tensor.
|
||||||
|
|
||||||
|
The eigenvalues are sorted in ascending order, each repeated according to
|
||||||
|
its multiplicity.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
x : numpy.array of shape (:,3,3) or (3,3)
|
||||||
|
Symmetric tensor of which the eigenvalues are computed.
|
||||||
|
|
||||||
|
"""
|
||||||
|
return np.linalg.eigvalsh(symmetric(x))
|
||||||
|
|
||||||
|
|
||||||
|
def eigenvectors(x):
|
||||||
|
"""
|
||||||
|
Return eigenvectors of a symmetric tensor.
|
||||||
|
|
||||||
|
The eigenvalues are sorted in ascending order of their associated eigenvalues.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
x : numpy.array of shape (:,3,3) or (3,3)
|
||||||
|
Symmetric tensor of which the eigenvectors are computed.
|
||||||
|
|
||||||
|
"""
|
||||||
|
(u,v) = np.linalg.eigh(symmetric(x))
|
||||||
|
return v
|
||||||
|
|
||||||
|
|
||||||
|
def left_stretch(x):
|
||||||
|
"""
|
||||||
|
Return the left stretch of a tensor.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
x : numpy.array of shape (:,3,3) or (3,3)
|
||||||
|
Tensor of which the left stretch is computed.
|
||||||
|
|
||||||
|
"""
|
||||||
|
return __polar_decomposition(x,'V')[0]
|
||||||
|
|
||||||
|
|
||||||
|
def maximum_shear(x):
|
||||||
|
"""
|
||||||
|
Return the maximum shear component of a symmetric tensor.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
x : numpy.array of shape (:,3,3) or (3,3)
|
||||||
|
Symmetric tensor of which the maximum shear is computed.
|
||||||
|
|
||||||
|
"""
|
||||||
|
w = eigenvalues(x)
|
||||||
|
return (w[0] - w[2])*0.5 if np.shape(x) == (3,3) else \
|
||||||
|
(w[:,0] - w[:,2])*0.5
|
||||||
|
|
||||||
|
|
||||||
|
def Mises_strain(epsilon):
|
||||||
|
"""
|
||||||
|
Return the Mises equivalent of a strain tensor.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
epsilon : numpy.array of shape (:,3,3) or (3,3)
|
||||||
|
Symmetric strain tensor of which the von Mises equivalent is computed.
|
||||||
|
|
||||||
|
"""
|
||||||
|
return __Mises(epsilon,2.0/3.0)
|
||||||
|
|
||||||
|
|
||||||
|
def Mises_stress(sigma):
|
||||||
|
"""
|
||||||
|
Return the Mises equivalent of a stress tensor.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
sigma : numpy.array of shape (:,3,3) or (3,3)
|
||||||
|
Symmetric stress tensor of which the von Mises equivalent is computed.
|
||||||
|
|
||||||
|
"""
|
||||||
|
return __Mises(sigma,3.0/2.0)
|
||||||
|
|
||||||
|
|
||||||
def PK2(F,P):
|
def PK2(F,P):
|
||||||
"""
|
"""
|
||||||
Return 2. Piola-Kirchhoff stress calculated from 1. Piola-Kirchhoff stress and deformation gradient.
|
Return 2. Piola-Kirchhoff stress calculated from 1. Piola-Kirchhoff stress and deformation gradient.
|
||||||
|
@ -39,6 +139,54 @@ def PK2(F,P):
|
||||||
S = np.einsum('ijk,ikl->ijl',np.linalg.inv(F),P)
|
S = np.einsum('ijk,ikl->ijl',np.linalg.inv(F),P)
|
||||||
return symmetric(S)
|
return symmetric(S)
|
||||||
|
|
||||||
|
def right_stretch(x):
|
||||||
|
"""
|
||||||
|
Return the right stretch of a tensor.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
x : numpy.array of shape (:,3,3) or (3,3)
|
||||||
|
Tensor of which the right stretch is computed.
|
||||||
|
|
||||||
|
"""
|
||||||
|
return __polar_decomposition(x,'U')[0]
|
||||||
|
|
||||||
|
|
||||||
|
def rotational_part(x):
|
||||||
|
"""
|
||||||
|
Return the rotational part of a tensor.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
x : numpy.array of shape (:,3,3) or (3,3)
|
||||||
|
Tensor of which the rotational part is computed.
|
||||||
|
|
||||||
|
"""
|
||||||
|
return __polar_decomposition(x,'R')[0]
|
||||||
|
|
||||||
|
|
||||||
|
def spherical_part(x,tensor=False):
|
||||||
|
"""
|
||||||
|
Return spherical (hydrostatic) part of a tensor.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
x : numpy.array of shape (:,3,3) or (3,3)
|
||||||
|
Tensor of which the hydrostatic part is computed.
|
||||||
|
tensor : bool, optional
|
||||||
|
Map spherical part onto identity tensor. Default is false
|
||||||
|
|
||||||
|
"""
|
||||||
|
if x.shape == (3,3):
|
||||||
|
sph = np.trace(x)/3.0
|
||||||
|
return sph if not tensor else np.eye(3)*sph
|
||||||
|
else:
|
||||||
|
sph = np.trace(x,axis1=1,axis2=2)/3.0
|
||||||
|
if not tensor:
|
||||||
|
return sph
|
||||||
|
else:
|
||||||
|
return np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),(x.shape[0],3,3)),sph)
|
||||||
|
|
||||||
|
|
||||||
def strain_tensor(F,t,m):
|
def strain_tensor(F,t,m):
|
||||||
"""
|
"""
|
||||||
|
@ -78,73 +226,6 @@ def strain_tensor(F,t,m):
|
||||||
eps
|
eps
|
||||||
|
|
||||||
|
|
||||||
def deviatoric_part(x):
|
|
||||||
"""
|
|
||||||
Return deviatoric part of a tensor.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
x : numpy.array of shape (:,3,3) or (3,3)
|
|
||||||
Tensor of which the deviatoric part is computed.
|
|
||||||
|
|
||||||
"""
|
|
||||||
return x - np.eye(3)*spherical_part(x) if np.shape(x) == (3,3) else \
|
|
||||||
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x))
|
|
||||||
|
|
||||||
|
|
||||||
def spherical_part(x,tensor=False):
|
|
||||||
"""
|
|
||||||
Return spherical (hydrostatic) part of a tensor.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
x : numpy.array of shape (:,3,3) or (3,3)
|
|
||||||
Tensor of which the hydrostatic part is computed.
|
|
||||||
tensor : bool, optional
|
|
||||||
Map spherical part onto identity tensor. Default is false
|
|
||||||
|
|
||||||
"""
|
|
||||||
if x.shape == (3,3):
|
|
||||||
sph = np.trace(x)/3.0
|
|
||||||
return sph if not tensor else np.eye(3)*sph
|
|
||||||
else:
|
|
||||||
sph = np.trace(x,axis1=1,axis2=2)/3.0
|
|
||||||
if not tensor:
|
|
||||||
return sph
|
|
||||||
else:
|
|
||||||
return np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),(x.shape[0],3,3)),sph)
|
|
||||||
|
|
||||||
|
|
||||||
def Mises_stress(sigma):
|
|
||||||
"""
|
|
||||||
Return the Mises equivalent of a stress tensor.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
sigma : numpy.array of shape (:,3,3) or (3,3)
|
|
||||||
Symmetric stress tensor of which the von Mises equivalent is computed.
|
|
||||||
|
|
||||||
"""
|
|
||||||
s = deviatoric_part(sigma)
|
|
||||||
return np.sqrt(3.0/2.0*(np.sum(s**2.0))) if np.shape(sigma) == (3,3) else \
|
|
||||||
np.sqrt(3.0/2.0*np.einsum('ijk->i',s**2.0))
|
|
||||||
|
|
||||||
|
|
||||||
def Mises_strain(epsilon):
|
|
||||||
"""
|
|
||||||
Return the Mises equivalent of a strain tensor.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
epsilon : numpy.array of shape (:,3,3) or (3,3)
|
|
||||||
Symmetric strain tensor of which the von Mises equivalent is computed.
|
|
||||||
|
|
||||||
"""
|
|
||||||
s = deviatoric_part(epsilon)
|
|
||||||
return np.sqrt(2.0/3.0*(np.sum(s**2.0))) if np.shape(epsilon) == (3,3) else \
|
|
||||||
np.sqrt(2.0/3.0*np.einsum('ijk->i',s**2.0))
|
|
||||||
|
|
||||||
|
|
||||||
def symmetric(x):
|
def symmetric(x):
|
||||||
"""
|
"""
|
||||||
Return the symmetrized tensor.
|
Return the symmetrized tensor.
|
||||||
|
@ -158,53 +239,6 @@ def symmetric(x):
|
||||||
return (x+transpose(x))*0.5
|
return (x+transpose(x))*0.5
|
||||||
|
|
||||||
|
|
||||||
def maximum_shear(x):
|
|
||||||
"""
|
|
||||||
Return the maximum shear component of a symmetric tensor.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
x : numpy.array of shape (:,3,3) or (3,3)
|
|
||||||
Symmetric tensor of which the maximum shear is computed.
|
|
||||||
|
|
||||||
"""
|
|
||||||
w = eigenvalues(x)
|
|
||||||
return (w[0] - w[2])*0.5 if np.shape(x) == (3,3) else \
|
|
||||||
(w[:,0] - w[:,2])*0.5
|
|
||||||
|
|
||||||
|
|
||||||
def eigenvalues(x):
|
|
||||||
"""
|
|
||||||
Return the eigenvalues, i.e. principal components, of a symmetric tensor.
|
|
||||||
|
|
||||||
The eigenvalues are sorted in ascending order, each repeated according to
|
|
||||||
its multiplicity.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
x : numpy.array of shape (:,3,3) or (3,3)
|
|
||||||
Symmetric tensor of which the eigenvalues are computed.
|
|
||||||
|
|
||||||
"""
|
|
||||||
return np.linalg.eigvalsh(symmetric(x))
|
|
||||||
|
|
||||||
|
|
||||||
def eigenvectors(x):
|
|
||||||
"""
|
|
||||||
Return eigenvectors of a symmetric tensor.
|
|
||||||
|
|
||||||
The eigenvalues are sorted in ascending order of their associated eigenvalues.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
x : numpy.array of shape (:,3,3) or (3,3)
|
|
||||||
Symmetric tensor of which the eigenvectors are computed.
|
|
||||||
|
|
||||||
"""
|
|
||||||
(u,v) = np.linalg.eigh(symmetric(x))
|
|
||||||
return v
|
|
||||||
|
|
||||||
|
|
||||||
def transpose(x):
|
def transpose(x):
|
||||||
"""
|
"""
|
||||||
Return the transpose of a tensor.
|
Return the transpose of a tensor.
|
||||||
|
@ -219,45 +253,6 @@ def transpose(x):
|
||||||
np.transpose(x,(0,2,1))
|
np.transpose(x,(0,2,1))
|
||||||
|
|
||||||
|
|
||||||
def rotational_part(x):
|
|
||||||
"""
|
|
||||||
Return the rotational part of a tensor.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
x : numpy.array of shape (:,3,3) or (3,3)
|
|
||||||
Tensor of which the rotational part is computed.
|
|
||||||
|
|
||||||
"""
|
|
||||||
return __polar_decomposition(x,'R')[0]
|
|
||||||
|
|
||||||
|
|
||||||
def left_stretch(x):
|
|
||||||
"""
|
|
||||||
Return the left stretch of a tensor.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
x : numpy.array of shape (:,3,3) or (3,3)
|
|
||||||
Tensor of which the left stretch is computed.
|
|
||||||
|
|
||||||
"""
|
|
||||||
return __polar_decomposition(x,'V')[0]
|
|
||||||
|
|
||||||
|
|
||||||
def right_stretch(x):
|
|
||||||
"""
|
|
||||||
Return the right stretch of a tensor.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
x : numpy.array of shape (:,3,3) or (3,3)
|
|
||||||
Tensor of which the right stretch is computed.
|
|
||||||
|
|
||||||
"""
|
|
||||||
return __polar_decomposition(x,'U')[0]
|
|
||||||
|
|
||||||
|
|
||||||
def __polar_decomposition(x,requested):
|
def __polar_decomposition(x,requested):
|
||||||
"""
|
"""
|
||||||
Singular value decomposition.
|
Singular value decomposition.
|
||||||
|
@ -284,3 +279,19 @@ def __polar_decomposition(x,requested):
|
||||||
output.append(np.dot(R.T,x) if np.shape(x) == (3,3) else np.einsum('ikj,ikl->ijl',R,x))
|
output.append(np.dot(R.T,x) if np.shape(x) == (3,3) else np.einsum('ikj,ikl->ijl',R,x))
|
||||||
|
|
||||||
return tuple(output)
|
return tuple(output)
|
||||||
|
|
||||||
|
|
||||||
|
def __Mises(x,s):
|
||||||
|
"""
|
||||||
|
Base equation for Mises equivalent of a stres or strain tensor.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
x : numpy.array of shape (:,3,3) or (3,3)
|
||||||
|
Symmetric tensor of which the von Mises equivalent is computed.
|
||||||
|
s : float
|
||||||
|
Scaling factor (2/3 for strain, 3/2 for stress).
|
||||||
|
"""
|
||||||
|
d = deviatoric_part(x)
|
||||||
|
return np.sqrt(s*(np.sum(d**2.0))) if np.shape(x) == (3,3) else \
|
||||||
|
np.sqrt(s*np.einsum('ijk->i',d**2.0))
|
||||||
|
|
|
@ -13,6 +13,61 @@ class TestMechanics:
|
||||||
assert np.allclose(mechanics.Cauchy(F,P)[self.c],
|
assert np.allclose(mechanics.Cauchy(F,P)[self.c],
|
||||||
mechanics.Cauchy(F[self.c],P[self.c]))
|
mechanics.Cauchy(F[self.c],P[self.c]))
|
||||||
|
|
||||||
|
def test_vectorize_deviatoric_part(self):
|
||||||
|
x = np.random.random((self.n,3,3))
|
||||||
|
assert np.allclose(mechanics.deviatoric_part(x)[self.c],
|
||||||
|
mechanics.deviatoric_part(x[self.c]))
|
||||||
|
|
||||||
|
def test_vectorize_eigenvalues(self):
|
||||||
|
x = np.random.random((self.n,3,3))
|
||||||
|
assert np.allclose(mechanics.eigenvalues(x)[self.c],
|
||||||
|
mechanics.eigenvalues(x[self.c]))
|
||||||
|
|
||||||
|
def test_vectorize_eigenvectors(self):
|
||||||
|
x = np.random.random((self.n,3,3))
|
||||||
|
assert np.allclose(mechanics.eigenvectors(x)[self.c],
|
||||||
|
mechanics.eigenvectors(x[self.c]))
|
||||||
|
|
||||||
|
def test_vectorize_left_stretch(self):
|
||||||
|
x = np.random.random((self.n,3,3))
|
||||||
|
assert np.allclose(mechanics.left_stretch(x)[self.c],
|
||||||
|
mechanics.left_stretch(x[self.c]))
|
||||||
|
|
||||||
|
def test_vectorize_maximum_shear(self):
|
||||||
|
x = np.random.random((self.n,3,3))
|
||||||
|
assert np.allclose(mechanics.maximum_shear(x)[self.c],
|
||||||
|
mechanics.maximum_shear(x[self.c]))
|
||||||
|
|
||||||
|
def test_vectorize_Mises_strain(self):
|
||||||
|
epsilon = np.random.random((self.n,3,3))
|
||||||
|
assert np.allclose(mechanics.Mises_strain(epsilon)[self.c],
|
||||||
|
mechanics.Mises_strain(epsilon[self.c]))
|
||||||
|
|
||||||
|
def test_vectorize_Mises_stress(self):
|
||||||
|
sigma = np.random.random((self.n,3,3))
|
||||||
|
assert np.allclose(mechanics.Mises_stress(sigma)[self.c],
|
||||||
|
mechanics.Mises_stress(sigma[self.c]))
|
||||||
|
|
||||||
|
def test_vectorize_PK2(self):
|
||||||
|
F = np.random.random((self.n,3,3))
|
||||||
|
P = np.random.random((self.n,3,3))
|
||||||
|
assert np.allclose(mechanics.PK2(F,P)[self.c],
|
||||||
|
mechanics.PK2(F[self.c],P[self.c]))
|
||||||
|
|
||||||
|
def test_vectorize_right_stretch(self):
|
||||||
|
x = np.random.random((self.n,3,3))
|
||||||
|
assert np.allclose(mechanics.right_stretch(x)[self.c],
|
||||||
|
mechanics.right_stretch(x[self.c]))
|
||||||
|
|
||||||
|
def test_vectorize_rotational_part(self):
|
||||||
|
x = np.random.random((self.n,3,3))
|
||||||
|
assert np.allclose(mechanics.rotational_part(x)[self.c],
|
||||||
|
mechanics.rotational_part(x[self.c]))
|
||||||
|
|
||||||
|
def test_vectorize_spherical_part(self):
|
||||||
|
x = np.random.random((self.n,3,3))
|
||||||
|
assert np.allclose(mechanics.spherical_part(x,True)[self.c],
|
||||||
|
mechanics.spherical_part(x[self.c],True))
|
||||||
|
|
||||||
def test_vectorize_strain_tensor(self):
|
def test_vectorize_strain_tensor(self):
|
||||||
F = np.random.random((self.n,3,3))
|
F = np.random.random((self.n,3,3))
|
||||||
|
@ -21,92 +76,24 @@ class TestMechanics:
|
||||||
assert np.allclose(mechanics.strain_tensor(F,t,m)[self.c],
|
assert np.allclose(mechanics.strain_tensor(F,t,m)[self.c],
|
||||||
mechanics.strain_tensor(F[self.c],t,m))
|
mechanics.strain_tensor(F[self.c],t,m))
|
||||||
|
|
||||||
|
|
||||||
def test_vectorize_deviatoric_part(self):
|
|
||||||
x = np.random.random((self.n,3,3))
|
|
||||||
assert np.allclose(mechanics.deviatoric_part(x)[self.c],
|
|
||||||
mechanics.deviatoric_part(x[self.c]))
|
|
||||||
|
|
||||||
|
|
||||||
def test_vectorize_spherical_part(self):
|
|
||||||
x = np.random.random((self.n,3,3))
|
|
||||||
assert np.allclose(mechanics.spherical_part(x,True)[self.c],
|
|
||||||
mechanics.spherical_part(x[self.c],True))
|
|
||||||
|
|
||||||
|
|
||||||
def test_vectorize_Mises_stress(self):
|
|
||||||
sigma = np.random.random((self.n,3,3))
|
|
||||||
assert np.allclose(mechanics.Mises_stress(sigma)[self.c],
|
|
||||||
mechanics.Mises_stress(sigma[self.c]))
|
|
||||||
|
|
||||||
|
|
||||||
def test_vectorize_Mises_strain(self):
|
|
||||||
epsilon = np.random.random((self.n,3,3))
|
|
||||||
assert np.allclose(mechanics.Mises_strain(epsilon)[self.c],
|
|
||||||
mechanics.Mises_strain(epsilon[self.c]))
|
|
||||||
|
|
||||||
|
|
||||||
def test_vectorize_symmetric(self):
|
def test_vectorize_symmetric(self):
|
||||||
x = np.random.random((self.n,3,3))
|
x = np.random.random((self.n,3,3))
|
||||||
assert np.allclose(mechanics.symmetric(x)[self.c],
|
assert np.allclose(mechanics.symmetric(x)[self.c],
|
||||||
mechanics.symmetric(x[self.c]))
|
mechanics.symmetric(x[self.c]))
|
||||||
|
|
||||||
|
|
||||||
def test_vectorize_maximum_shear(self):
|
|
||||||
x = np.random.random((self.n,3,3))
|
|
||||||
assert np.allclose(mechanics.maximum_shear(x)[self.c],
|
|
||||||
mechanics.maximum_shear(x[self.c]))
|
|
||||||
|
|
||||||
|
|
||||||
def test_vectorize_eigenvalues(self):
|
|
||||||
x = np.random.random((self.n,3,3))
|
|
||||||
assert np.allclose(mechanics.eigenvalues(x)[self.c],
|
|
||||||
mechanics.eigenvalues(x[self.c]))
|
|
||||||
|
|
||||||
|
|
||||||
def test_vectorize_eigenvectors(self):
|
|
||||||
x = np.random.random((self.n,3,3))
|
|
||||||
assert np.allclose(mechanics.eigenvectors(x)[self.c],
|
|
||||||
mechanics.eigenvectors(x[self.c]))
|
|
||||||
|
|
||||||
|
|
||||||
def test_vectorize_PK2(self):
|
|
||||||
F = np.random.random((self.n,3,3))
|
|
||||||
P = np.random.random((self.n,3,3))
|
|
||||||
assert np.allclose(mechanics.PK2(F,P)[self.c],
|
|
||||||
mechanics.PK2(F[self.c],P[self.c]))
|
|
||||||
|
|
||||||
|
|
||||||
def test_vectorize_transpose(self):
|
def test_vectorize_transpose(self):
|
||||||
x = np.random.random((self.n,3,3))
|
x = np.random.random((self.n,3,3))
|
||||||
assert np.allclose(mechanics.transpose(x)[self.c],
|
assert np.allclose(mechanics.transpose(x)[self.c],
|
||||||
mechanics.transpose(x[self.c]))
|
mechanics.transpose(x[self.c]))
|
||||||
|
|
||||||
|
|
||||||
def test_vectorize_rotational_part(self):
|
|
||||||
x = np.random.random((self.n,3,3))
|
|
||||||
assert np.allclose(mechanics.rotational_part(x)[self.c],
|
|
||||||
mechanics.rotational_part(x[self.c]))
|
|
||||||
|
|
||||||
|
|
||||||
def test_vectorize_left_stretch(self):
|
|
||||||
x = np.random.random((self.n,3,3))
|
|
||||||
assert np.allclose(mechanics.left_stretch(x)[self.c],
|
|
||||||
mechanics.left_stretch(x[self.c]))
|
|
||||||
|
|
||||||
|
|
||||||
def test_vectorize_right_stretch(self):
|
|
||||||
x = np.random.random((self.n,3,3))
|
|
||||||
assert np.allclose(mechanics.right_stretch(x)[self.c],
|
|
||||||
mechanics.right_stretch(x[self.c]))
|
|
||||||
|
|
||||||
|
|
||||||
def test_Cauchy(self):
|
def test_Cauchy(self):
|
||||||
"""Ensure Cauchy stress is symmetrized 1. Piola-Kirchhoff stress for no deformation."""
|
"""Ensure Cauchy stress is symmetrized 1. Piola-Kirchhoff stress for no deformation."""
|
||||||
P = np.random.random((self.n,3,3))
|
P = np.random.random((self.n,3,3))
|
||||||
assert np.allclose(mechanics.Cauchy(np.broadcast_to(np.eye(3),(self.n,3,3)),P),
|
assert np.allclose(mechanics.Cauchy(np.broadcast_to(np.eye(3),(self.n,3,3)),P),
|
||||||
mechanics.symmetric(P))
|
mechanics.symmetric(P))
|
||||||
|
|
||||||
|
|
||||||
def test_polar_decomposition(self):
|
def test_polar_decomposition(self):
|
||||||
"""F = RU = VR."""
|
"""F = RU = VR."""
|
||||||
F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.random((self.n,3,3))
|
F = np.broadcast_to(np.eye(3),[self.n,3,3])*np.random.random((self.n,3,3))
|
||||||
|
@ -216,7 +203,6 @@ class TestMechanics:
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
assert np.allclose(np.linalg.det(A[s]-lambd[s,i]*np.eye(3)),.0)
|
assert np.allclose(np.linalg.det(A[s]-lambd[s,i]*np.eye(3)),.0)
|
||||||
|
|
||||||
|
|
||||||
def test_eigenvalues_and_vectors(self):
|
def test_eigenvalues_and_vectors(self):
|
||||||
"""Ensure that eigenvalues and -vectors are the solution to the characteristic polynomial."""
|
"""Ensure that eigenvalues and -vectors are the solution to the characteristic polynomial."""
|
||||||
A = mechanics.symmetric(np.random.random((self.n,3,3)))
|
A = mechanics.symmetric(np.random.random((self.n,3,3)))
|
||||||
|
|
Loading…
Reference in New Issue