avoiding public variables

This commit is contained in:
Martin Diehl 2020-12-29 18:27:24 +01:00
parent 9e18e1d10a
commit e34937a0d2
5 changed files with 107 additions and 102 deletions

View File

@ -45,12 +45,8 @@ module constitutive
type(rotation), dimension(:,:,:), allocatable :: & type(rotation), dimension(:,:,:), allocatable :: &
crystallite_orientation !< current orientation crystallite_orientation !< current orientation
real(pReal), dimension(:,:,:,:,:), allocatable :: &
crystallite_F0 !< def grad at start of FE inc
real(pReal), dimension(:,:,:,:,:), allocatable, public :: & real(pReal), dimension(:,:,:,:,:), allocatable, public :: &
crystallite_P, & !< 1st Piola-Kirchhoff stress per grain crystallite_P !< 1st Piola-Kirchhoff stress per grain
crystallite_partitionedF0, & !< def grad at start of homog inc
crystallite_F !< def grad to be reached at end of homog inc
type :: tTensorContainer type :: tTensorContainer
real(pReal), dimension(:,:,:), allocatable :: data real(pReal), dimension(:,:,:), allocatable :: data
@ -61,18 +57,21 @@ module constitutive
constitutive_mech_Fe, & constitutive_mech_Fe, &
constitutive_mech_Fi, & constitutive_mech_Fi, &
constitutive_mech_Fp, & constitutive_mech_Fp, &
constitutive_mech_F, &
constitutive_mech_Li, & constitutive_mech_Li, &
constitutive_mech_Lp, & constitutive_mech_Lp, &
constitutive_mech_S, & constitutive_mech_S, &
! converged value at end of last solver increment ! converged value at end of last solver increment
constitutive_mech_Fi0, & constitutive_mech_Fi0, &
constitutive_mech_Fp0, & constitutive_mech_Fp0, &
constitutive_mech_F0, &
constitutive_mech_Li0, & constitutive_mech_Li0, &
constitutive_mech_Lp0, & constitutive_mech_Lp0, &
constitutive_mech_S0, & constitutive_mech_S0, &
! converged value at end of last homogenization increment (RGC only) ! converged value at end of last homogenization increment (RGC only)
constitutive_mech_partitionedFi0, & constitutive_mech_partitionedFi0, &
constitutive_mech_partitionedFp0, & constitutive_mech_partitionedFp0, &
constitutive_mech_partitionedF0, &
constitutive_mech_partitionedLi0, & constitutive_mech_partitionedLi0, &
constitutive_mech_partitionedLp0, & constitutive_mech_partitionedLp0, &
constitutive_mech_partitionedS0 constitutive_mech_partitionedS0
@ -339,13 +338,11 @@ module constitutive
end subroutine constitutive_plastic_LpAndItsTangents end subroutine constitutive_plastic_LpAndItsTangents
module subroutine constitutive_plastic_dependentState(F, co, ip, el) module subroutine constitutive_plastic_dependentState(co,ip,el)
integer, intent(in) :: & integer, intent(in) :: &
co, & !< component-ID of integration point co, & !< component-ID of integration point
ip, & !< integration point ip, & !< integration point
el !< element el !< element
real(pReal), intent(in), dimension(3,3) :: &
F !< elastic deformation gradient
end subroutine constitutive_plastic_dependentState end subroutine constitutive_plastic_dependentState
@ -394,6 +391,7 @@ module constitutive
integrateSourceState, & integrateSourceState, &
constitutive_mech_setF, & constitutive_mech_setF, &
constitutive_mech_getLp, & constitutive_mech_getLp, &
constitutive_mech_getF, &
constitutive_mech_getS, & constitutive_mech_getS, &
crystallite_restartRead, & crystallite_restartRead, &
constitutive_initializeRestorationPoints, & constitutive_initializeRestorationPoints, &
@ -789,15 +787,14 @@ end subroutine constitutive_restore
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine constitutive_forward subroutine constitutive_forward
integer :: i, j integer :: ph, so
crystallite_F0 = crystallite_F
call constitutive_mech_forward() call constitutive_mech_forward()
do i = 1, size(sourceState) do ph = 1, size(sourceState)
do j = 1,phase_Nsources(i) do so = 1,phase_Nsources(ph)
sourceState(i)%p(j)%state0 = sourceState(i)%p(j)%state sourceState(ph)%p(so)%state0 = sourceState(ph)%p(so)%state
enddo; enddo enddo; enddo
end subroutine constitutive_forward end subroutine constitutive_forward
@ -862,12 +859,6 @@ subroutine crystallite_init
eMax = discretization_Nelems eMax = discretization_Nelems
allocate(crystallite_P(3,3,cMax,iMax,eMax),source=0.0_pReal) allocate(crystallite_P(3,3,cMax,iMax,eMax),source=0.0_pReal)
allocate(crystallite_F0, &
crystallite_partitionedF0,&
crystallite_F, &
source = crystallite_P)
allocate(crystallite_orientation(cMax,iMax,eMax)) allocate(crystallite_orientation(cMax,iMax,eMax))
@ -911,6 +902,9 @@ subroutine crystallite_init
allocate(constitutive_mech_Fp(phases%length)) allocate(constitutive_mech_Fp(phases%length))
allocate(constitutive_mech_Fp0(phases%length)) allocate(constitutive_mech_Fp0(phases%length))
allocate(constitutive_mech_partitionedFp0(phases%length)) allocate(constitutive_mech_partitionedFp0(phases%length))
allocate(constitutive_mech_F(phases%length))
allocate(constitutive_mech_F0(phases%length))
allocate(constitutive_mech_partitionedF0(phases%length))
allocate(constitutive_mech_Li(phases%length)) allocate(constitutive_mech_Li(phases%length))
allocate(constitutive_mech_Li0(phases%length)) allocate(constitutive_mech_Li0(phases%length))
allocate(constitutive_mech_partitionedLi0(phases%length)) allocate(constitutive_mech_partitionedLi0(phases%length))
@ -939,6 +933,9 @@ subroutine crystallite_init
allocate(constitutive_mech_S(ph)%data(3,3,Nconstituents),source=0.0_pReal) allocate(constitutive_mech_S(ph)%data(3,3,Nconstituents),source=0.0_pReal)
allocate(constitutive_mech_S0(ph)%data(3,3,Nconstituents),source=0.0_pReal) allocate(constitutive_mech_S0(ph)%data(3,3,Nconstituents),source=0.0_pReal)
allocate(constitutive_mech_partitionedS0(ph)%data(3,3,Nconstituents),source=0.0_pReal) allocate(constitutive_mech_partitionedS0(ph)%data(3,3,Nconstituents),source=0.0_pReal)
allocate(constitutive_mech_F(ph)%data(3,3,Nconstituents))
allocate(constitutive_mech_F0(ph)%data(3,3,Nconstituents))
allocate(constitutive_mech_partitionedF0(ph)%data(3,3,Nconstituents))
do so = 1, phase_Nsources(ph) do so = 1, phase_Nsources(ph)
allocate(sourceState(ph)%p(so)%subState0,source=sourceState(ph)%p(so)%state0) ! ToDo: hack allocate(sourceState(ph)%p(so)%subState0,source=sourceState(ph)%p(so)%state0) ! ToDo: hack
enddo enddo
@ -955,28 +952,27 @@ subroutine crystallite_init
ph = material_phaseAt(co,el) ph = material_phaseAt(co,el)
me = material_phaseMemberAt(co,ip,el) me = material_phaseMemberAt(co,ip,el)
constitutive_mech_Fp0(ph)%data(1:3,1:3,me) = material_orientation0(co,ip,el)%asMatrix() ! Fp reflects initial orientation (see 10.1016/j.actamat.2006.01.005) constitutive_mech_Fp0(ph)%data(1:3,1:3,me) = material_orientation0(co,ip,el)%asMatrix() ! Fp reflects initial orientation (see 10.1016/j.actamat.2006.01.005)
constitutive_mech_Fp0(ph)%data(1:3,1:3,me) = constitutive_mech_Fp0(ph)%data(1:3,1:3,me) & constitutive_mech_Fp0(ph)%data(1:3,1:3,me) = constitutive_mech_Fp0(ph)%data(1:3,1:3,me) &
/ math_det33(constitutive_mech_Fp0(ph)%data(1:3,1:3,me))**(1.0_pReal/3.0_pReal) / math_det33(constitutive_mech_Fp0(ph)%data(1:3,1:3,me))**(1.0_pReal/3.0_pReal)
constitutive_mech_Fi0(ph)%data(1:3,1:3,me) = math_I3 constitutive_mech_Fi0(ph)%data(1:3,1:3,me) = math_I3
constitutive_mech_F0(ph)%data(1:3,1:3,me) = math_I3
crystallite_F0(1:3,1:3,co,ip,el) = math_I3
constitutive_mech_Fe(ph)%data(1:3,1:3,me) = math_inv33(matmul(constitutive_mech_Fi0(ph)%data(1:3,1:3,me), & constitutive_mech_Fe(ph)%data(1:3,1:3,me) = math_inv33(matmul(constitutive_mech_Fi0(ph)%data(1:3,1:3,me), &
constitutive_mech_Fp0(ph)%data(1:3,1:3,me))) ! assuming that euler angles are given in internal strain free configuration constitutive_mech_Fp0(ph)%data(1:3,1:3,me))) ! assuming that euler angles are given in internal strain free configuration
constitutive_mech_Fp(ph)%data(1:3,1:3,me) = constitutive_mech_Fp0(ph)%data(1:3,1:3,me) constitutive_mech_Fp(ph)%data(1:3,1:3,me) = constitutive_mech_Fp0(ph)%data(1:3,1:3,me)
constitutive_mech_Fi(ph)%data(1:3,1:3,me) = constitutive_mech_Fi0(ph)%data(1:3,1:3,me) constitutive_mech_Fi(ph)%data(1:3,1:3,me) = constitutive_mech_Fi0(ph)%data(1:3,1:3,me)
constitutive_mech_F(ph)%data(1:3,1:3,me) = constitutive_mech_F0(ph)%data(1:3,1:3,me)
constitutive_mech_partitionedFi0(ph)%data(1:3,1:3,me) = constitutive_mech_Fi0(ph)%data(1:3,1:3,me) constitutive_mech_partitionedFi0(ph)%data(1:3,1:3,me) = constitutive_mech_Fi0(ph)%data(1:3,1:3,me)
constitutive_mech_partitionedFp0(ph)%data(1:3,1:3,me) = constitutive_mech_Fp0(ph)%data(1:3,1:3,me) constitutive_mech_partitionedFp0(ph)%data(1:3,1:3,me) = constitutive_mech_Fp0(ph)%data(1:3,1:3,me)
constitutive_mech_partitionedF0(ph)%data(1:3,1:3,me) = constitutive_mech_F0(ph)%data(1:3,1:3,me)
enddo enddo
enddo; enddo enddo; enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
crystallite_partitionedF0 = crystallite_F0
crystallite_F = crystallite_F0
!$OMP PARALLEL DO PRIVATE(ph,me) !$OMP PARALLEL DO PRIVATE(ph,me)
do el = 1, size(material_phaseMemberAt,3) do el = 1, size(material_phaseMemberAt,3)
@ -985,7 +981,7 @@ subroutine crystallite_init
ph = material_phaseAt(co,el) ph = material_phaseAt(co,el)
me = material_phaseMemberAt(co,ip,el) me = material_phaseMemberAt(co,ip,el)
call crystallite_orientations(co,ip,el) call crystallite_orientations(co,ip,el)
call constitutive_plastic_dependentState(crystallite_partitionedF0(1:3,1:3,co,ip,el),co,ip,el) ! update dependent state variables to be consistent with basic states call constitutive_plastic_dependentState(co,ip,el) ! update dependent state variables to be consistent with basic states
enddo enddo
enddo enddo
enddo enddo
@ -1010,13 +1006,11 @@ subroutine constitutive_initializeRestorationPoints(ip,el)
do co = 1,homogenization_Nconstituents(material_homogenizationAt(el)) do co = 1,homogenization_Nconstituents(material_homogenizationAt(el))
ph = material_phaseAt(co,el) ph = material_phaseAt(co,el)
me = material_phaseMemberAt(co,ip,el) me = material_phaseMemberAt(co,ip,el)
crystallite_partitionedF0(1:3,1:3,co,ip,el) = crystallite_F0(1:3,1:3,co,ip,el)
call mech_initializeRestorationPoints(ph,me) call mech_initializeRestorationPoints(ph,me)
do so = 1, phase_Nsources(material_phaseAt(co,el)) do so = 1, phase_Nsources(material_phaseAt(co,el))
sourceState(material_phaseAt(co,el))%p(so)%partitionedState0(:,material_phasememberAt(co,ip,el)) = & sourceState(ph)%p(so)%partitionedState0(:,me) = sourceState(ph)%p(so)%state0(:,me)
sourceState(material_phaseAt(co,el))%p(so)%state0( :,material_phasememberAt(co,ip,el))
enddo enddo
enddo enddo
@ -1040,7 +1034,6 @@ subroutine constitutive_windForward(ip,el)
do co = 1,homogenization_Nconstituents(material_homogenizationAt(el)) do co = 1,homogenization_Nconstituents(material_homogenizationAt(el))
ph = material_phaseAt(co,el) ph = material_phaseAt(co,el)
me = material_phaseMemberAt(co,ip,el) me = material_phaseMemberAt(co,ip,el)
crystallite_partitionedF0 (1:3,1:3,co,ip,el) = crystallite_F (1:3,1:3,co,ip,el)
call constitutive_mech_windForward(ph,me) call constitutive_mech_windForward(ph,me)
do so = 1, phase_Nsources(material_phaseAt(co,el)) do so = 1, phase_Nsources(material_phaseAt(co,el))
@ -1132,8 +1125,8 @@ function crystallite_stressTangent(dt,co,ip,el) result(dPdF)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! calculate dSdF ! calculate dSdF
temp_33_1 = transpose(matmul(invFp,invFi)) temp_33_1 = transpose(matmul(invFp,invFi))
temp_33_2 = matmul(crystallite_F(1:3,1:3,co,ip,el),invSubFp0) temp_33_2 = matmul(constitutive_mech_F(ph)%data(1:3,1:3,me),invSubFp0)
temp_33_3 = matmul(matmul(crystallite_F(1:3,1:3,co,ip,el),invFp), invSubFi0) temp_33_3 = matmul(matmul(constitutive_mech_F(ph)%data(1:3,1:3,me),invFp), invSubFi0)
do o=1,3; do p=1,3 do o=1,3; do p=1,3
rhs_3333(p,o,1:3,1:3) = matmul(dSdFe(p,o,1:3,1:3),temp_33_1) rhs_3333(p,o,1:3,1:3) = matmul(dSdFe(p,o,1:3,1:3),temp_33_1)
@ -1162,7 +1155,7 @@ function crystallite_stressTangent(dt,co,ip,el) result(dPdF)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! assemble dPdF ! assemble dPdF
temp_33_1 = matmul(constitutive_mech_S(ph)%data(1:3,1:3,me),transpose(invFp)) temp_33_1 = matmul(constitutive_mech_S(ph)%data(1:3,1:3,me),transpose(invFp))
temp_33_2 = matmul(crystallite_F(1:3,1:3,co,ip,el),invFp) temp_33_2 = matmul(constitutive_mech_F(ph)%data(1:3,1:3,me),invFp)
temp_33_3 = matmul(temp_33_2,constitutive_mech_S(ph)%data(1:3,1:3,me)) temp_33_3 = matmul(temp_33_2,constitutive_mech_S(ph)%data(1:3,1:3,me))
dPdF = 0.0_pReal dPdF = 0.0_pReal
@ -1171,7 +1164,7 @@ function crystallite_stressTangent(dt,co,ip,el) result(dPdF)
enddo enddo
do o=1,3; do p=1,3 do o=1,3; do p=1,3
dPdF(1:3,1:3,p,o) = dPdF(1:3,1:3,p,o) & dPdF(1:3,1:3,p,o) = dPdF(1:3,1:3,p,o) &
+ matmul(matmul(crystallite_F(1:3,1:3,co,ip,el),dFpinvdF(1:3,1:3,p,o)),temp_33_1) & + matmul(matmul(constitutive_mech_F(ph)%data(1:3,1:3,me),dFpinvdF(1:3,1:3,p,o)),temp_33_1) &
+ matmul(matmul(temp_33_2,dSdF(1:3,1:3,p,o)),transpose(invFp)) & + matmul(matmul(temp_33_2,dSdF(1:3,1:3,p,o)),transpose(invFp)) &
+ matmul(temp_33_3,transpose(dFpinvdF(1:3,1:3,p,o))) + matmul(temp_33_3,transpose(dFpinvdF(1:3,1:3,p,o)))
enddo; enddo enddo; enddo
@ -1207,17 +1200,17 @@ end subroutine crystallite_orientations
function crystallite_push33ToRef(co,ip,el, tensor33) function crystallite_push33ToRef(co,ip,el, tensor33)
real(pReal), dimension(3,3), intent(in) :: tensor33 real(pReal), dimension(3,3), intent(in) :: tensor33
real(pReal), dimension(3,3) :: T
integer, intent(in):: & integer, intent(in):: &
el, & el, &
ip, & ip, &
co co
real(pReal), dimension(3,3) :: crystallite_push33ToRef real(pReal), dimension(3,3) :: crystallite_push33ToRef
real(pReal), dimension(3,3) :: T
T = matmul(material_orientation0(co,ip,el)%asMatrix(), & ! ToDo: initial orientation correct? T = matmul(material_orientation0(co,ip,el)%asMatrix(), & ! ToDo: initial orientation correct?
transpose(math_inv33(crystallite_F(1:3,1:3,co,ip,el)))) transpose(math_inv33(constitutive_mech_F(material_phaseAt(co,el))%data(1:3,1:3,material_phaseMemberAt(co,ip,el)))))
crystallite_push33ToRef = matmul(transpose(T),matmul(tensor33,T)) crystallite_push33ToRef = matmul(transpose(T),matmul(tensor33,T))
end function crystallite_push33ToRef end function crystallite_push33ToRef
@ -1360,8 +1353,6 @@ subroutine crystallite_restartWrite
write(fileName,'(a,i0,a)') trim(getSolverJobName())//'_',worldrank,'.hdf5' write(fileName,'(a,i0,a)') trim(getSolverJobName())//'_',worldrank,'.hdf5'
fileHandle = HDF5_openFile(fileName,'a') fileHandle = HDF5_openFile(fileName,'a')
call HDF5_write(fileHandle,crystallite_F,'F')
groupHandle = HDF5_addGroup(fileHandle,'phase') groupHandle = HDF5_addGroup(fileHandle,'phase')
do ph = 1,size(material_name_phase) do ph = 1,size(material_name_phase)
write(datasetName,'(i0,a)') ph,'_omega' write(datasetName,'(i0,a)') ph,'_omega'
@ -1376,6 +1367,8 @@ subroutine crystallite_restartWrite
call HDF5_write(groupHandle,constitutive_mech_Fp(ph)%data,datasetName) call HDF5_write(groupHandle,constitutive_mech_Fp(ph)%data,datasetName)
write(datasetName,'(i0,a)') ph,'_S' write(datasetName,'(i0,a)') ph,'_S'
call HDF5_write(groupHandle,constitutive_mech_S(ph)%data,datasetName) call HDF5_write(groupHandle,constitutive_mech_S(ph)%data,datasetName)
write(datasetName,'(i0,a)') ph,'_F'
call HDF5_write(groupHandle,constitutive_mech_F(ph)%data,datasetName)
enddo enddo
call HDF5_closeGroup(groupHandle) call HDF5_closeGroup(groupHandle)
@ -1406,8 +1399,6 @@ subroutine crystallite_restartRead
write(fileName,'(a,i0,a)') trim(getSolverJobName())//'_',worldrank,'.hdf5' write(fileName,'(a,i0,a)') trim(getSolverJobName())//'_',worldrank,'.hdf5'
fileHandle = HDF5_openFile(fileName) fileHandle = HDF5_openFile(fileName)
call HDF5_read(fileHandle,crystallite_F0, 'F')
groupHandle = HDF5_openGroup(fileHandle,'phase') groupHandle = HDF5_openGroup(fileHandle,'phase')
do ph = 1,size(material_name_phase) do ph = 1,size(material_name_phase)
write(datasetName,'(i0,a)') ph,'_omega' write(datasetName,'(i0,a)') ph,'_omega'
@ -1422,6 +1413,8 @@ subroutine crystallite_restartRead
call HDF5_read(groupHandle,constitutive_mech_Fp0(ph)%data,datasetName) call HDF5_read(groupHandle,constitutive_mech_Fp0(ph)%data,datasetName)
write(datasetName,'(i0,a)') ph,'_S' write(datasetName,'(i0,a)') ph,'_S'
call HDF5_read(groupHandle,constitutive_mech_S0(ph)%data,datasetName) call HDF5_read(groupHandle,constitutive_mech_S0(ph)%data,datasetName)
write(datasetName,'(i0,a)') ph,'_F'
call HDF5_read(groupHandle,constitutive_mech_F0(ph)%data,datasetName)
enddo enddo
call HDF5_closeGroup(groupHandle) call HDF5_closeGroup(groupHandle)
@ -1461,6 +1454,18 @@ function constitutive_mech_getLp(co,ip,el) result(Lp)
end function constitutive_mech_getLp end function constitutive_mech_getLp
! getter for non-mech (e.g. thermal)
function constitutive_mech_getF(co,ip,el) result(F)
integer, intent(in) :: co, ip, el
real(pReal), dimension(3,3) :: F
F = constitutive_mech_F(material_phaseAt(co,el))%data(1:3,1:3,material_phaseMemberAt(co,ip,el))
end function constitutive_mech_getF
! setter for homogenization ! setter for homogenization
subroutine constitutive_mech_setF(F,co,ip,el) subroutine constitutive_mech_setF(F,co,ip,el)
@ -1468,8 +1473,7 @@ subroutine constitutive_mech_setF(F,co,ip,el)
integer, intent(in) :: co, ip, el integer, intent(in) :: co, ip, el
crystallite_F(1:3,1:3,co,ip,el) = F constitutive_mech_F(material_phaseAt(co,el))%data(1:3,1:3,material_phaseMemberAt(co,ip,el)) = F
!constitutive_mech_F(material_phaseAt(co,el))%data(1:3,1:3,material_phaseMemberAt(co,ip,el)) = F
end subroutine constitutive_mech_setF end subroutine constitutive_mech_setF

View File

@ -184,12 +184,9 @@ submodule(constitutive) constitutive_mech
of of
end subroutine plastic_disloTungsten_dotState end subroutine plastic_disloTungsten_dotState
module subroutine plastic_nonlocal_dotState(Mp, F, Temperature,timestep, & module subroutine plastic_nonlocal_dotState(Mp,Temperature,timestep,instance,of,ip,el)
instance,of,ip,el)
real(pReal), dimension(3,3), intent(in) :: & real(pReal), dimension(3,3), intent(in) :: &
Mp !< MandelStress Mp !< MandelStress
real(pReal), dimension(3,3,homogenization_maxNconstituents,discretization_nIPs,discretization_Nelems), intent(in) :: &
F !< deformation gradient
real(pReal), intent(in) :: & real(pReal), intent(in) :: &
Temperature, & !< temperature Temperature, & !< temperature
timestep !< substepped crystallite time increment timestep !< substepped crystallite time increment
@ -215,9 +212,7 @@ submodule(constitutive) constitutive_mech
of of
end subroutine plastic_dislotungsten_dependentState end subroutine plastic_dislotungsten_dependentState
module subroutine plastic_nonlocal_dependentState(F, instance, of, ip, el) module subroutine plastic_nonlocal_dependentState(instance, of, ip, el)
real(pReal), dimension(3,3), intent(in) :: &
F !< deformation gradient
integer, intent(in) :: & integer, intent(in) :: &
instance, & instance, &
of, & of, &
@ -480,32 +475,35 @@ end subroutine constitutive_hooke_SandItsTangents
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calls microstructure function of the different plasticity constitutive models !> @brief calls microstructure function of the different plasticity constitutive models
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module subroutine constitutive_plastic_dependentState(F, co, ip, el) module subroutine constitutive_plastic_dependentState(co, ip, el)
integer, intent(in) :: & integer, intent(in) :: &
co, & !< component-ID of integration point co, & !< component-ID of integration point
ip, & !< integration point ip, & !< integration point
el !< element el !< element
real(pReal), intent(in), dimension(3,3) :: &
F !< deformation gradient
integer :: & integer :: &
ho, & !< homogenization ho, & !< homogenization
tme, & !< thermal member position tme, & !< thermal member position
instance, of instance, me
ho = material_homogenizationAt(el) ho = material_homogenizationAt(el)
tme = material_homogenizationMemberAt(ip,el) tme = material_homogenizationMemberAt(ip,el)
of = material_phasememberAt(co,ip,el) me = material_phasememberAt(co,ip,el)
instance = phase_plasticityInstance(material_phaseAt(co,el)) instance = phase_plasticityInstance(material_phaseAt(co,el))
plasticityType: select case (phase_plasticity(material_phaseAt(co,el))) plasticityType: select case (phase_plasticity(material_phaseAt(co,el)))
case (PLASTICITY_DISLOTWIN_ID) plasticityType case (PLASTICITY_DISLOTWIN_ID) plasticityType
call plastic_dislotwin_dependentState(temperature(ho)%p(tme),instance,of) call plastic_dislotwin_dependentState(temperature(ho)%p(tme),instance,me)
case (PLASTICITY_DISLOTUNGSTEN_ID) plasticityType case (PLASTICITY_DISLOTUNGSTEN_ID) plasticityType
call plastic_dislotungsten_dependentState(instance,of) call plastic_dislotungsten_dependentState(instance,me)
case (PLASTICITY_NONLOCAL_ID) plasticityType case (PLASTICITY_NONLOCAL_ID) plasticityType
call plastic_nonlocal_dependentState (F,instance,of,ip,el) call plastic_nonlocal_dependentState(instance,me,ip,el)
end select plasticityType end select plasticityType
end subroutine constitutive_plastic_dependentState end subroutine constitutive_plastic_dependentState
@ -539,13 +537,13 @@ module subroutine constitutive_plastic_LpAndItsTangents(Lp, dLp_dS, dLp_dFi, &
ho, & !< homogenization ho, & !< homogenization
tme !< thermal member position tme !< thermal member position
integer :: & integer :: &
i, j, instance, of i, j, instance, me
ho = material_homogenizationAt(el) ho = material_homogenizationAt(el)
tme = material_homogenizationMemberAt(ip,el) tme = material_homogenizationMemberAt(ip,el)
Mp = matmul(matmul(transpose(Fi),Fi),S) Mp = matmul(matmul(transpose(Fi),Fi),S)
of = material_phasememberAt(co,ip,el) me = material_phasememberAt(co,ip,el)
instance = phase_plasticityInstance(material_phaseAt(co,el)) instance = phase_plasticityInstance(material_phaseAt(co,el))
plasticityType: select case (phase_plasticity(material_phaseAt(co,el))) plasticityType: select case (phase_plasticity(material_phaseAt(co,el)))
@ -555,22 +553,22 @@ module subroutine constitutive_plastic_LpAndItsTangents(Lp, dLp_dS, dLp_dFi, &
dLp_dMp = 0.0_pReal dLp_dMp = 0.0_pReal
case (PLASTICITY_ISOTROPIC_ID) plasticityType case (PLASTICITY_ISOTROPIC_ID) plasticityType
call plastic_isotropic_LpAndItsTangent(Lp,dLp_dMp,Mp,instance,of) call plastic_isotropic_LpAndItsTangent(Lp,dLp_dMp,Mp,instance,me)
case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType
call plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMp,Mp,instance,of) call plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMp,Mp,instance,me)
case (PLASTICITY_KINEHARDENING_ID) plasticityType case (PLASTICITY_KINEHARDENING_ID) plasticityType
call plastic_kinehardening_LpAndItsTangent(Lp,dLp_dMp,Mp,instance,of) call plastic_kinehardening_LpAndItsTangent(Lp,dLp_dMp,Mp,instance,me)
case (PLASTICITY_NONLOCAL_ID) plasticityType case (PLASTICITY_NONLOCAL_ID) plasticityType
call plastic_nonlocal_LpAndItsTangent(Lp,dLp_dMp,Mp, temperature(ho)%p(tme),instance,of,ip,el) call plastic_nonlocal_LpAndItsTangent(Lp,dLp_dMp,Mp, temperature(ho)%p(tme),instance,me,ip,el)
case (PLASTICITY_DISLOTWIN_ID) plasticityType case (PLASTICITY_DISLOTWIN_ID) plasticityType
call plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,temperature(ho)%p(tme),instance,of) call plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,temperature(ho)%p(tme),instance,me)
case (PLASTICITY_DISLOTUNGSTEN_ID) plasticityType case (PLASTICITY_DISLOTUNGSTEN_ID) plasticityType
call plastic_dislotungsten_LpAndItsTangent(Lp,dLp_dMp,Mp,temperature(ho)%p(tme),instance,of) call plastic_dislotungsten_LpAndItsTangent(Lp,dLp_dMp,Mp,temperature(ho)%p(tme),instance,me)
end select plasticityType end select plasticityType
@ -601,9 +599,9 @@ function mech_collectDotState(subdt, co, ip, el,ph,of) result(broken)
integer :: & integer :: &
ho, & !< homogenization ho, & !< homogenization
tme, & !< thermal member position tme, & !< thermal member position
i, & !< counter in source loop
instance instance
logical :: broken logical :: broken
ho = material_homogenizationAt(el) ho = material_homogenizationAt(el)
tme = material_homogenizationMemberAt(ip,el) tme = material_homogenizationMemberAt(ip,el)
instance = phase_plasticityInstance(ph) instance = phase_plasticityInstance(ph)
@ -629,8 +627,7 @@ function mech_collectDotState(subdt, co, ip, el,ph,of) result(broken)
call plastic_disloTungsten_dotState(Mp,temperature(ho)%p(tme),instance,of) call plastic_disloTungsten_dotState(Mp,temperature(ho)%p(tme),instance,of)
case (PLASTICITY_NONLOCAL_ID) plasticityType case (PLASTICITY_NONLOCAL_ID) plasticityType
call plastic_nonlocal_dotState(Mp,crystallite_partitionedF0,temperature(ho)%p(tme),subdt, & call plastic_nonlocal_dotState(Mp,temperature(ho)%p(tme),subdt,instance,of,ip,el)
instance,of,ip,el)
end select plasticityType end select plasticityType
broken = any(IEEE_is_NaN(plasticState(ph)%dotState(:,of))) broken = any(IEEE_is_NaN(plasticState(ph)%dotState(:,of)))
@ -798,13 +795,14 @@ function integrateStress(F,subFp0,subFi0,Delta_t,co,ip,el) result(broken)
jacoCounterLi ! counters to check for Jacobian update jacoCounterLi ! counters to check for Jacobian update
logical :: error,broken logical :: error,broken
broken = .true.
call constitutive_plastic_dependentState(crystallite_F(1:3,1:3,co,ip,el),co,ip,el) broken = .true.
ph = material_phaseAt(co,el) ph = material_phaseAt(co,el)
me = material_phaseMemberAt(co,ip,el) me = material_phaseMemberAt(co,ip,el)
call constitutive_plastic_dependentState(co,ip,el)
Lpguess = constitutive_mech_Lp(ph)%data(1:3,1:3,me) ! take as first guess Lpguess = constitutive_mech_Lp(ph)%data(1:3,1:3,me) ! take as first guess
Liguess = constitutive_mech_Li(ph)%data(1:3,1:3,me) ! take as first guess Liguess = constitutive_mech_Li(ph)%data(1:3,1:3,me) ! take as first guess
@ -1289,8 +1287,7 @@ subroutine crystallite_results(group,ph)
select case (output_constituent(ph)%label(ou)) select case (output_constituent(ph)%label(ou))
case('F') case('F')
selected_tensors = select_tensors(crystallite_F,ph) call results_writeDataset(group//'/mechanics/',constitutive_mech_F(ph)%data,output_constituent(ph)%label(ou),&
call results_writeDataset(group//'/mechanics/',selected_tensors,output_constituent(ph)%label(ou),&
'deformation gradient','1') 'deformation gradient','1')
case('F_e') case('F_e')
call results_writeDataset(group//'/mechanics/',constitutive_mech_Fe(ph)%data,output_constituent(ph)%label(ou),& call results_writeDataset(group//'/mechanics/',constitutive_mech_Fe(ph)%data,output_constituent(ph)%label(ou),&
@ -1405,6 +1402,7 @@ module subroutine mech_initializeRestorationPoints(ph,me)
constitutive_mech_partitionedFi0(ph)%data(1:3,1:3,me) = constitutive_mech_Fi0(ph)%data(1:3,1:3,me) constitutive_mech_partitionedFi0(ph)%data(1:3,1:3,me) = constitutive_mech_Fi0(ph)%data(1:3,1:3,me)
constitutive_mech_partitionedFp0(ph)%data(1:3,1:3,me) = constitutive_mech_Fp0(ph)%data(1:3,1:3,me) constitutive_mech_partitionedFp0(ph)%data(1:3,1:3,me) = constitutive_mech_Fp0(ph)%data(1:3,1:3,me)
constitutive_mech_partitionedF0(ph)%data(1:3,1:3,me) = constitutive_mech_F0(ph)%data(1:3,1:3,me)
constitutive_mech_partitionedLi0(ph)%data(1:3,1:3,me) = constitutive_mech_Li0(ph)%data(1:3,1:3,me) constitutive_mech_partitionedLi0(ph)%data(1:3,1:3,me) = constitutive_mech_Li0(ph)%data(1:3,1:3,me)
constitutive_mech_partitionedLp0(ph)%data(1:3,1:3,me) = constitutive_mech_Lp0(ph)%data(1:3,1:3,me) constitutive_mech_partitionedLp0(ph)%data(1:3,1:3,me) = constitutive_mech_Lp0(ph)%data(1:3,1:3,me)
constitutive_mech_partitionedS0(ph)%data(1:3,1:3,me) = constitutive_mech_S0(ph)%data(1:3,1:3,me) constitutive_mech_partitionedS0(ph)%data(1:3,1:3,me) = constitutive_mech_S0(ph)%data(1:3,1:3,me)
@ -1424,6 +1422,7 @@ module subroutine constitutive_mech_windForward(ph,me)
constitutive_mech_partitionedFp0(ph)%data(1:3,1:3,me) = constitutive_mech_Fp(ph)%data(1:3,1:3,me) constitutive_mech_partitionedFp0(ph)%data(1:3,1:3,me) = constitutive_mech_Fp(ph)%data(1:3,1:3,me)
constitutive_mech_partitionedFi0(ph)%data(1:3,1:3,me) = constitutive_mech_Fi(ph)%data(1:3,1:3,me) constitutive_mech_partitionedFi0(ph)%data(1:3,1:3,me) = constitutive_mech_Fi(ph)%data(1:3,1:3,me)
constitutive_mech_partitionedF0(ph)%data(1:3,1:3,me) = constitutive_mech_F(ph)%data(1:3,1:3,me)
constitutive_mech_partitionedLi0(ph)%data(1:3,1:3,me) = constitutive_mech_Li(ph)%data(1:3,1:3,me) constitutive_mech_partitionedLi0(ph)%data(1:3,1:3,me) = constitutive_mech_Li(ph)%data(1:3,1:3,me)
constitutive_mech_partitionedLp0(ph)%data(1:3,1:3,me) = constitutive_mech_Lp(ph)%data(1:3,1:3,me) constitutive_mech_partitionedLp0(ph)%data(1:3,1:3,me) = constitutive_mech_Lp(ph)%data(1:3,1:3,me)
constitutive_mech_partitionedS0(ph)%data(1:3,1:3,me) = constitutive_mech_S(ph)%data(1:3,1:3,me) constitutive_mech_partitionedS0(ph)%data(1:3,1:3,me) = constitutive_mech_S(ph)%data(1:3,1:3,me)
@ -1445,6 +1444,7 @@ module subroutine constitutive_mech_forward()
do ph = 1, size(plasticState) do ph = 1, size(plasticState)
constitutive_mech_Fi0(ph) = constitutive_mech_Fi(ph) constitutive_mech_Fi0(ph) = constitutive_mech_Fi(ph)
constitutive_mech_Fp0(ph) = constitutive_mech_Fp(ph) constitutive_mech_Fp0(ph) = constitutive_mech_Fp(ph)
constitutive_mech_F0(ph) = constitutive_mech_F(ph)
constitutive_mech_Li0(ph) = constitutive_mech_Li(ph) constitutive_mech_Li0(ph) = constitutive_mech_Li(ph)
constitutive_mech_Lp0(ph) = constitutive_mech_Lp(ph) constitutive_mech_Lp0(ph) = constitutive_mech_Lp(ph)
constitutive_mech_S0(ph) = constitutive_mech_S(ph) constitutive_mech_S0(ph) = constitutive_mech_S(ph)
@ -1519,7 +1519,7 @@ module function crystallite_stress(dt,co,ip,el) result(converged_)
enddo enddo
subFp0 = constitutive_mech_partitionedFp0(ph)%data(1:3,1:3,me) subFp0 = constitutive_mech_partitionedFp0(ph)%data(1:3,1:3,me)
subFi0 = constitutive_mech_partitionedFi0(ph)%data(1:3,1:3,me) subFi0 = constitutive_mech_partitionedFi0(ph)%data(1:3,1:3,me)
subF0 = crystallite_partitionedF0(1:3,1:3,co,ip,el) subF0 = constitutive_mech_partitionedF0(ph)%data(1:3,1:3,me)
subFrac = 0.0_pReal subFrac = 0.0_pReal
subStep = 1.0_pReal/num%subStepSizeCryst subStep = 1.0_pReal/num%subStepSizeCryst
todo = .true. todo = .true.
@ -1569,7 +1569,7 @@ module function crystallite_stress(dt,co,ip,el) result(converged_)
! prepare for integration ! prepare for integration
if (todo) then if (todo) then
subF = subF0 & subF = subF0 &
+ subStep * (crystallite_F(1:3,1:3,co,ip,el) - crystallite_partitionedF0(1:3,1:3,co,ip,el)) + subStep * (constitutive_mech_F(ph)%data(1:3,1:3,me) - constitutive_mech_partitionedF0(ph)%data(1:3,1:3,me))
constitutive_mech_Fe(ph)%data(1:3,1:3,me) = matmul(subF,math_inv33(matmul(constitutive_mech_Fi(ph)%data(1:3,1:3,me), & constitutive_mech_Fe(ph)%data(1:3,1:3,me) = matmul(subF,math_inv33(matmul(constitutive_mech_Fi(ph)%data(1:3,1:3,me), &
constitutive_mech_Fp(ph)%data(1:3,1:3,me)))) constitutive_mech_Fp(ph)%data(1:3,1:3,me))))
converged_ = .not. integrateState(subF0,subF,subFp0,subFi0,subState0(1:sizeDotState),subStep * dt,co,ip,el) converged_ = .not. integrateState(subF0,subF,subFp0,subFi0,subState0(1:sizeDotState),subStep * dt,co,ip,el)

View File

@ -552,10 +552,8 @@ end function plastic_nonlocal_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculates quantities characterizing the microstructure !> @brief calculates quantities characterizing the microstructure
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
module subroutine plastic_nonlocal_dependentState(F, instance, of, ip, el) module subroutine plastic_nonlocal_dependentState(instance, of, ip, el)
real(pReal), dimension(3,3), intent(in) :: &
F
integer, intent(in) :: & integer, intent(in) :: &
instance, & instance, &
of, & of, &
@ -647,7 +645,7 @@ module subroutine plastic_nonlocal_dependentState(F, instance, of, ip, el)
ph = material_phaseAt(1,el) ph = material_phaseAt(1,el)
me = material_phaseMemberAt(1,ip,el) me = material_phaseMemberAt(1,ip,el)
invFp = math_inv33(constitutive_mech_Fp(ph)%data(1:3,1:3,me)) invFp = math_inv33(constitutive_mech_Fp(ph)%data(1:3,1:3,me))
invFe = matmul(constitutive_mech_Fp(ph)%data(1:3,1:3,me),math_inv33(F)) invFe = math_inv33(constitutive_mech_Fe(ph)%data(1:3,1:3,me))
rho_edg_delta = rho0(:,mob_edg_pos) - rho0(:,mob_edg_neg) rho_edg_delta = rho0(:,mob_edg_pos) - rho0(:,mob_edg_neg)
rho_scr_delta = rho0(:,mob_scr_pos) - rho0(:,mob_scr_neg) rho_scr_delta = rho0(:,mob_scr_pos) - rho0(:,mob_scr_neg)
@ -976,13 +974,11 @@ end subroutine plastic_nonlocal_deltaState
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure !> @brief calculates the rate of change of microstructure
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
module subroutine plastic_nonlocal_dotState(Mp, F, Temperature,timestep, & module subroutine plastic_nonlocal_dotState(Mp, Temperature,timestep, &
instance,of,ip,el) instance,of,ip,el)
real(pReal), dimension(3,3), intent(in) :: & real(pReal), dimension(3,3), intent(in) :: &
Mp !< MandelStress Mp !< MandelStress
real(pReal), dimension(3,3,homogenization_maxNconstituents,discretization_nIPs,discretization_Nelems), intent(in) :: &
F !< Deformation gradient
real(pReal), intent(in) :: & real(pReal), intent(in) :: &
Temperature, & !< temperature Temperature, & !< temperature
timestep !< substepped crystallite time increment timestep !< substepped crystallite time increment
@ -1149,7 +1145,7 @@ module subroutine plastic_nonlocal_dotState(Mp, F, Temperature,timestep, &
- rhoDip(s,1) / timestep - rhoDotAthermalAnnihilation(s,9) & - rhoDip(s,1) / timestep - rhoDotAthermalAnnihilation(s,9) &
- rhoDotSingle2DipoleGlide(s,9)) ! make sure that we do not annihilate more dipoles than we have - rhoDotSingle2DipoleGlide(s,9)) ! make sure that we do not annihilate more dipoles than we have
rhoDot = rhoDotFlux(F,timestep, instance,of,ip,el) & rhoDot = rhoDotFlux(timestep, instance,of,ip,el) &
+ rhoDotMultiplication & + rhoDotMultiplication &
+ rhoDotSingle2DipoleGlide & + rhoDotSingle2DipoleGlide &
+ rhoDotAthermalAnnihilation & + rhoDotAthermalAnnihilation &
@ -1178,10 +1174,8 @@ end subroutine plastic_nonlocal_dotState
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure !> @brief calculates the rate of change of microstructure
!--------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------
function rhoDotFlux(F,timestep, instance,of,ip,el) function rhoDotFlux(timestep,instance,of,ip,el)
real(pReal), dimension(3,3,homogenization_maxNconstituents,discretization_nIPs,discretization_Nelems), intent(in) :: &
F !< Deformation gradient
real(pReal), intent(in) :: & real(pReal), intent(in) :: &
timestep !< substepped crystallite time increment timestep !< substepped crystallite time increment
integer, intent(in) :: & integer, intent(in) :: &
@ -1293,7 +1287,7 @@ function rhoDotFlux(F,timestep, instance,of,ip,el)
m(1:3,:,3) = -prm%slip_transverse m(1:3,:,3) = -prm%slip_transverse
m(1:3,:,4) = prm%slip_transverse m(1:3,:,4) = prm%slip_transverse
my_F = F(1:3,1:3,1,ip,el) my_F = constitutive_mech_F(ph)%data(1:3,1:3,of)
my_Fe = matmul(my_F, math_inv33(constitutive_mech_Fp(ph)%data(1:3,1:3,of))) my_Fe = matmul(my_F, math_inv33(constitutive_mech_Fp(ph)%data(1:3,1:3,of)))
neighbors: do n = 1,nIPneighbors neighbors: do n = 1,nIPneighbors
@ -1311,7 +1305,7 @@ function rhoDotFlux(F,timestep, instance,of,ip,el)
if (neighbor_n > 0) then ! if neighbor exists, average deformation gradient if (neighbor_n > 0) then ! if neighbor exists, average deformation gradient
neighbor_instance = phase_plasticityInstance(material_phaseAt(1,neighbor_el)) neighbor_instance = phase_plasticityInstance(material_phaseAt(1,neighbor_el))
neighbor_F = F(1:3,1:3,1,neighbor_ip,neighbor_el) neighbor_F = constitutive_mech_F(np)%data(1:3,1:3,no)
neighbor_Fe = matmul(neighbor_F, math_inv33(constitutive_mech_Fp(np)%data(1:3,1:3,no))) neighbor_Fe = matmul(neighbor_F, math_inv33(constitutive_mech_Fp(np)%data(1:3,1:3,no)))
Favg = 0.5_pReal * (my_F + neighbor_F) Favg = 0.5_pReal * (my_F + neighbor_F)
else ! if no neighbor, take my value as average else ! if no neighbor, take my value as average

View File

@ -202,15 +202,17 @@ module function mech_updateState(subdt,subF,ip,el) result(doneAndHappy)
integer :: co integer :: co
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt(el))) real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
real(pReal) :: Fs(3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
if (homogenization_type(material_homogenizationAt(el)) == HOMOGENIZATION_RGC_ID) then if (homogenization_type(material_homogenizationAt(el)) == HOMOGENIZATION_RGC_ID) then
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el)) do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
dPdFs(:,:,:,:,co) = crystallite_stressTangent(subdt,co,ip,el) dPdFs(:,:,:,:,co) = crystallite_stressTangent(subdt,co,ip,el)
Fs(:,:,co) = constitutive_mech_getF(co,ip,el)
enddo enddo
doneAndHappy = & doneAndHappy = &
mech_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), & mech_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
crystallite_F(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), & Fs, &
subF,& subF,&
subdt, & subdt, &
dPdFs, & dPdFs, &

View File

@ -112,14 +112,16 @@ function thermal_conduction_getConductivity(ip,el)
el !< element number el !< element number
real(pReal), dimension(3,3) :: & real(pReal), dimension(3,3) :: &
thermal_conduction_getConductivity thermal_conduction_getConductivity
integer :: & integer :: &
grain co
thermal_conduction_getConductivity = 0.0_pReal thermal_conduction_getConductivity = 0.0_pReal
do grain = 1, homogenization_Nconstituents(material_homogenizationAt(el))
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
thermal_conduction_getConductivity = thermal_conduction_getConductivity + & thermal_conduction_getConductivity = thermal_conduction_getConductivity + &
crystallite_push33ToRef(grain,ip,el,lattice_K(:,:,material_phaseAt(grain,el))) crystallite_push33ToRef(co,ip,el,lattice_K(:,:,material_phaseAt(co,el)))
enddo enddo
thermal_conduction_getConductivity = thermal_conduction_getConductivity & thermal_conduction_getConductivity = thermal_conduction_getConductivity &
@ -138,14 +140,16 @@ function thermal_conduction_getSpecificHeat(ip,el)
el !< element number el !< element number
real(pReal) :: & real(pReal) :: &
thermal_conduction_getSpecificHeat thermal_conduction_getSpecificHeat
integer :: & integer :: &
grain co
thermal_conduction_getSpecificHeat = 0.0_pReal thermal_conduction_getSpecificHeat = 0.0_pReal
do grain = 1, homogenization_Nconstituents(material_homogenizationAt(el)) do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat & thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat &
+ lattice_c_p(material_phaseAt(grain,el)) + lattice_c_p(material_phaseAt(co,el))
enddo enddo
thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat & thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat &
@ -164,15 +168,16 @@ function thermal_conduction_getMassDensity(ip,el)
el !< element number el !< element number
real(pReal) :: & real(pReal) :: &
thermal_conduction_getMassDensity thermal_conduction_getMassDensity
integer :: & integer :: &
grain co
thermal_conduction_getMassDensity = 0.0_pReal thermal_conduction_getMassDensity = 0.0_pReal
do co = 1, homogenization_Nconstituents(material_homogenizationAt(el))
do grain = 1, homogenization_Nconstituents(material_homogenizationAt(el))
thermal_conduction_getMassDensity = thermal_conduction_getMassDensity & thermal_conduction_getMassDensity = thermal_conduction_getMassDensity &
+ lattice_rho(material_phaseAt(grain,el)) + lattice_rho(material_phaseAt(co,el))
enddo enddo
thermal_conduction_getMassDensity = thermal_conduction_getMassDensity & thermal_conduction_getMassDensity = thermal_conduction_getMassDensity &