distinguish 'family' and 'lattice'

this requires the user to specify a keyword ('*' notation in __init__).
Since all 'from_xxx' methods anyway require a keyword, it does not
causes much more work (one explicit keyword in case of cube orientation
when using __init__ directly).
This commit is contained in:
Martin Diehl 2021-06-01 21:51:28 +02:00
parent 684016f3e3
commit e281d8384f
2 changed files with 126 additions and 118 deletions

View File

@ -30,10 +30,12 @@ lattice_symmetries = {
} }
_parameter_doc = \ _parameter_doc = \
"""lattice : str """
Either a crystal family out of {triclinic, monoclinic, orthorhombic, tetragonal, hexagonal, cubic} family : {'triclinic', 'monoclinic', 'orthorhombic', 'tetragonal', 'hexagonal', 'cubic'}
or a Bravais lattice out of {aP, mP, mS, oP, oS, oI, oF, tP, tI, hP, cP, cI, cF}. Crystal family. Mutual exclusive with 'lattice' parameter.
When specifying a Bravais lattice, additional lattice parameters might be required. lattice : {'aP', 'mP', 'mS', 'oP', 'oS', 'oI', 'oF', 'tP', 'tI', 'hP', 'cP', 'cI', 'cF'}.
Bravais lattice in Pearson notation.
Mutual exclusive with 'family' parameter.
a : float, optional a : float, optional
Length of lattice parameter 'a'. Length of lattice parameter 'a'.
b : float, optional b : float, optional
@ -110,7 +112,8 @@ class Orientation(Rotation):
@util.extend_docstring(_parameter_doc) @util.extend_docstring(_parameter_doc)
def __init__(self, def __init__(self,
rotation = None, rotation = np.array([1.0,0.0,0.0,0.0]), *,
family = None,
lattice = None, lattice = None,
a = None,b = None,c = None, a = None,b = None,c = None,
alpha = None,beta = None,gamma = None, alpha = None,beta = None,gamma = None,
@ -126,9 +129,16 @@ class Orientation(Rotation):
Defaults to no rotation. Defaults to no rotation.
""" """
Rotation.__init__(self) if rotation is None else Rotation.__init__(self,rotation=rotation) Rotation.__init__(self,rotation=rotation)
if lattice in lattice_symmetries: if family in set(lattice_symmetries.values()) and lattice is None:
self.family = family
self.lattice = None
self.a = self.b = self.c = None
self.alpha = self.beta = self.gamma = None
elif lattice in lattice_symmetries:
self.family = lattice_symmetries[lattice] self.family = lattice_symmetries[lattice]
self.lattice = lattice self.lattice = lattice
@ -169,14 +179,8 @@ class Orientation(Rotation):
> np.sum(np.roll([self.alpha,self.beta,self.gamma],r)[1:]) for r in range(3)]): > np.sum(np.roll([self.alpha,self.beta,self.gamma],r)[1:]) for r in range(3)]):
raise ValueError ('Each lattice angle must be less than sum of others') raise ValueError ('Each lattice angle must be less than sum of others')
elif lattice in set(lattice_symmetries.values()):
self.family = lattice
self.lattice = None
self.a = self.b = self.c = None
self.alpha = self.beta = self.gamma = None
else: else:
raise KeyError(f'Lattice "{lattice}" is unknown') raise KeyError(f'no valid family or lattice')
def __repr__(self): def __repr__(self):
@ -188,16 +192,16 @@ class Orientation(Rotation):
def __copy__(self,**kwargs): def __copy__(self,**kwargs):
"""Create deep copy.""" """Create deep copy."""
return self.__class__(rotation=kwargs['rotation'] if 'rotation' in kwargs else self.quaternion, return self.__class__(rotation= kwargs['rotation'] if 'rotation' in kwargs else self.quaternion,
lattice =kwargs['lattice'] if 'lattice' in kwargs else self.lattice family = kwargs['family'] if 'family' in kwargs else self.family,
if self.lattice is not None else self.family, lattice = kwargs['lattice'] if 'lattice' in kwargs else self.lattice,
a =kwargs['a'] if 'a' in kwargs else self.a, a = kwargs['a'] if 'a' in kwargs else self.a,
b =kwargs['b'] if 'b' in kwargs else self.b, b = kwargs['b'] if 'b' in kwargs else self.b,
c =kwargs['c'] if 'c' in kwargs else self.c, c = kwargs['c'] if 'c' in kwargs else self.c,
alpha =kwargs['alpha'] if 'alpha' in kwargs else self.alpha, alpha = kwargs['alpha'] if 'alpha' in kwargs else self.alpha,
beta =kwargs['beta'] if 'beta' in kwargs else self.beta, beta = kwargs['beta'] if 'beta' in kwargs else self.beta,
gamma =kwargs['gamma'] if 'gamma' in kwargs else self.gamma, gamma = kwargs['gamma'] if 'gamma' in kwargs else self.gamma,
degrees =kwargs['degrees'] if 'degrees' in kwargs else None, degrees = kwargs['degrees'] if 'degrees' in kwargs else None,
) )
copy = __copy__ copy = __copy__

View File

@ -25,38 +25,42 @@ def set_of_rodrigues(set_of_quaternions):
class TestOrientation: class TestOrientation:
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
@pytest.mark.parametrize('shape',[None,5,(4,6)]) @pytest.mark.parametrize('shape',[None,5,(4,6)])
def test_equal(self,lattice,shape): def test_equal(self,family,shape):
R = Rotation.from_random(shape) R = Rotation.from_random(shape)
assert Orientation(R,lattice) == Orientation(R,lattice) if shape is None else \ assert Orientation(R,family=family) == Orientation(R,family=family) if shape is None else \
(Orientation(R,lattice) == Orientation(R,lattice)).all() (Orientation(R,family=family) == Orientation(R,family=family)).all()
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
@pytest.mark.parametrize('shape',[None,5,(4,6)]) @pytest.mark.parametrize('shape',[None,5,(4,6)])
def test_unequal(self,lattice,shape): def test_unequal(self,family,shape):
R = Rotation.from_random(shape) R = Rotation.from_random(shape)
assert not ( Orientation(R,lattice) != Orientation(R,lattice) if shape is None else \ assert not ( Orientation(R,family=family) != Orientation(R,family=family) if shape is None else \
(Orientation(R,lattice) != Orientation(R,lattice)).any()) (Orientation(R,family=family) != Orientation(R,family=family)).any())
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
@pytest.mark.parametrize('shape',[None,5,(4,6)]) @pytest.mark.parametrize('shape',[None,5,(4,6)])
def test_close(self,lattice,shape): def test_close(self,family,shape):
R = Orientation.from_random(lattice=lattice,shape=shape) R = Orientation.from_random(family=family,shape=shape)
assert R.isclose(R.reduced).all() and R.allclose(R.reduced) assert R.isclose(R.reduced).all() and R.allclose(R.reduced)
@pytest.mark.parametrize('a,b',[ @pytest.mark.parametrize('a,b',[
(dict(rotation=[1,0,0,0],lattice='triclinic'), (dict(rotation=[1,0,0,0],family='triclinic'),
dict(rotation=[0.5,0.5,0.5,0.5],lattice='triclinic')), dict(rotation=[0.5,0.5,0.5,0.5],family='triclinic')),
(dict(rotation=[1,0,0,0],lattice='cubic'), (dict(rotation=[1,0,0,0],family='cubic'),
dict(rotation=[1,0,0,0],lattice='hexagonal')), dict(rotation=[1,0,0,0],family='hexagonal')),
])
def test_unequal_family(self,a,b):
assert Orientation(**a) != Orientation(**b)
@pytest.mark.parametrize('a,b',[
(dict(rotation=[1,0,0,0],lattice='cF',a=1), (dict(rotation=[1,0,0,0],lattice='cF',a=1),
dict(rotation=[1,0,0,0],lattice='cF',a=2)), dict(rotation=[1,0,0,0],lattice='cF',a=2)),
]) ])
def test_nonequal(self,a,b): def test_unequal_lattice(self,a,b):
assert Orientation(**a) != Orientation(**b) assert Orientation(**a) != Orientation(**b)
@pytest.mark.parametrize('kwargs',[ @pytest.mark.parametrize('kwargs',[
@ -100,47 +104,47 @@ class TestOrientation:
assert o != p assert o != p
def test_from_quaternion(self): def test_from_quaternion(self):
assert np.all(Orientation.from_quaternion(q=np.array([1,0,0,0]),lattice='triclinic').as_matrix() assert np.all(Orientation.from_quaternion(q=np.array([1,0,0,0]),family='triclinic').as_matrix()
== np.eye(3)) == np.eye(3))
def test_from_Euler_angles(self): def test_from_Euler_angles(self):
assert np.all(Orientation.from_Euler_angles(phi=np.zeros(3),lattice='triclinic').as_matrix() assert np.all(Orientation.from_Euler_angles(phi=np.zeros(3),family='triclinic').as_matrix()
== np.eye(3)) == np.eye(3))
def test_from_axis_angle(self): def test_from_axis_angle(self):
assert np.all(Orientation.from_axis_angle(axis_angle=[1,0,0,0],lattice='triclinic').as_matrix() assert np.all(Orientation.from_axis_angle(axis_angle=[1,0,0,0],family='triclinic').as_matrix()
== np.eye(3)) == np.eye(3))
def test_from_basis(self): def test_from_basis(self):
assert np.all(Orientation.from_basis(basis=np.eye(3),lattice='triclinic').as_matrix() assert np.all(Orientation.from_basis(basis=np.eye(3),family='triclinic').as_matrix()
== np.eye(3)) == np.eye(3))
def test_from_matrix(self): def test_from_matrix(self):
assert np.all(Orientation.from_matrix(R=np.eye(3),lattice='triclinic').as_matrix() assert np.all(Orientation.from_matrix(R=np.eye(3),family='triclinic').as_matrix()
== np.eye(3)) == np.eye(3))
def test_from_Rodrigues_vector(self): def test_from_Rodrigues_vector(self):
assert np.all(Orientation.from_Rodrigues_vector(rho=np.array([0,0,1,0]),lattice='triclinic').as_matrix() assert np.all(Orientation.from_Rodrigues_vector(rho=np.array([0,0,1,0]),family='triclinic').as_matrix()
== np.eye(3)) == np.eye(3))
def test_from_homochoric(self): def test_from_homochoric(self):
assert np.all(Orientation.from_homochoric(h=np.zeros(3),lattice='triclinic').as_matrix() assert np.all(Orientation.from_homochoric(h=np.zeros(3),family='triclinic').as_matrix()
== np.eye(3)) == np.eye(3))
def test_from_cubochoric(self): def test_from_cubochoric(self):
assert np.all(Orientation.from_cubochoric(x=np.zeros(3),lattice='triclinic').as_matrix() assert np.all(Orientation.from_cubochoric(x=np.zeros(3),family='triclinic').as_matrix()
== np.eye(3)) == np.eye(3))
def test_from_spherical_component(self): def test_from_spherical_component(self):
assert np.all(Orientation.from_spherical_component(center=Rotation(), assert np.all(Orientation.from_spherical_component(center=Rotation(),
sigma=0.0,N=1,lattice='triclinic').as_matrix() sigma=0.0,N=1,family='triclinic').as_matrix()
== np.eye(3)) == np.eye(3))
def test_from_fiber_component(self): def test_from_fiber_component(self):
r = Rotation.from_fiber_component(alpha=np.zeros(2),beta=np.zeros(2), r = Rotation.from_fiber_component(alpha=np.zeros(2),beta=np.zeros(2),
sigma=0.0,N=1,rng_seed=0) sigma=0.0,N=1,rng_seed=0)
assert np.all(Orientation.from_fiber_component(alpha=np.zeros(2),beta=np.zeros(2), assert np.all(Orientation.from_fiber_component(alpha=np.zeros(2),beta=np.zeros(2),
sigma=0.0,N=1,rng_seed=0,lattice='triclinic').quaternion sigma=0.0,N=1,rng_seed=0,family='triclinic').quaternion
== r.quaternion) == r.quaternion)
@pytest.mark.parametrize('kwargs',[ @pytest.mark.parametrize('kwargs',[
@ -185,26 +189,26 @@ class TestOrientation:
with pytest.raises(ValueError): with pytest.raises(ValueError):
Orientation(lattice='aP',a=1,b=2,c=3,alpha=45,beta=45,gamma=90.0001,degrees=True) # noqa Orientation(lattice='aP',a=1,b=2,c=3,alpha=45,beta=45,gamma=90.0001,degrees=True) # noqa
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
@pytest.mark.parametrize('angle',[10,20,30,40]) @pytest.mark.parametrize('angle',[10,20,30,40])
def test_average(self,angle,lattice): def test_average(self,angle,family):
o = Orientation.from_axis_angle(lattice=lattice,axis_angle=[[0,0,1,10],[0,0,1,angle]],degrees=True) o = Orientation.from_axis_angle(family=family,axis_angle=[[0,0,1,10],[0,0,1,angle]],degrees=True)
avg_angle = o.average().as_axis_angle(degrees=True,pair=True)[1] avg_angle = o.average().as_axis_angle(degrees=True,pair=True)[1]
assert np.isclose(avg_angle,10+(angle-10)/2.) assert np.isclose(avg_angle,10+(angle-10)/2.)
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
def test_reduced_equivalent(self,lattice): def test_reduced_equivalent(self,family):
i = Orientation(lattice=lattice) i = Orientation(family=family)
o = Orientation.from_random(lattice=lattice) o = Orientation.from_random(family=family)
eq = o.equivalent eq = o.equivalent
FZ = np.argmin(abs(eq.misorientation(i.broadcast_to(len(eq))).as_axis_angle(pair=True)[1])) FZ = np.argmin(abs(eq.misorientation(i.broadcast_to(len(eq))).as_axis_angle(pair=True)[1]))
assert o.reduced == eq[FZ] assert o.reduced == eq[FZ]
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
@pytest.mark.parametrize('N',[1,8,32]) @pytest.mark.parametrize('N',[1,8,32])
def test_disorientation(self,lattice,N): def test_disorientation(self,family,N):
o = Orientation.from_random(lattice=lattice,shape=N) o = Orientation.from_random(family=family,shape=N)
p = Orientation.from_random(lattice=lattice,shape=N) p = Orientation.from_random(family=family,shape=N)
d,ops = o.disorientation(p,return_operators=True) d,ops = o.disorientation(p,return_operators=True)
@ -218,72 +222,72 @@ class TestOrientation:
.misorientation(p[n].equivalent[ops[n][1]]) .misorientation(p[n].equivalent[ops[n][1]])
.as_quaternion()) .as_quaternion())
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
@pytest.mark.parametrize('a,b',[ @pytest.mark.parametrize('a,b',[
((2,3,2),(2,3,2)), ((2,3,2),(2,3,2)),
((2,2),(4,4)), ((2,2),(4,4)),
((3,1),(1,3)), ((3,1),(1,3)),
(None,None), (None,None),
]) ])
def test_disorientation_blending(self,lattice,a,b): def test_disorientation_blending(self,family,a,b):
o = Orientation.from_random(lattice=lattice,shape=a) o = Orientation.from_random(family=family,shape=a)
p = Orientation.from_random(lattice=lattice,shape=b) p = Orientation.from_random(family=family,shape=b)
blend = util.shapeblender(o.shape,p.shape) blend = util.shapeblender(o.shape,p.shape)
for loc in np.random.randint(0,blend,(10,len(blend))): for loc in np.random.randint(0,blend,(10,len(blend))):
assert o[tuple(loc[:len(o.shape)])].disorientation(p[tuple(loc[-len(p.shape):])]) \ assert o[tuple(loc[:len(o.shape)])].disorientation(p[tuple(loc[-len(p.shape):])]) \
.isclose(o.disorientation(p)[tuple(loc)]) .isclose(o.disorientation(p)[tuple(loc)])
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
def test_disorientation360(self,lattice): def test_disorientation360(self,family):
o_1 = Orientation(Rotation(),lattice) o_1 = Orientation(Rotation(),family=family)
o_2 = Orientation.from_Euler_angles(lattice=lattice,phi=[360,0,0],degrees=True) o_2 = Orientation.from_Euler_angles(family=family,phi=[360,0,0],degrees=True)
assert np.allclose((o_1.disorientation(o_2)).as_matrix(),np.eye(3)) assert np.allclose((o_1.disorientation(o_2)).as_matrix(),np.eye(3))
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
@pytest.mark.parametrize('shape',[(1),(2,3),(4,3,2)]) @pytest.mark.parametrize('shape',[(1),(2,3),(4,3,2)])
def test_reduced_vectorization(self,lattice,shape): def test_reduced_vectorization(self,family,shape):
o = Orientation.from_random(lattice=lattice,shape=shape) o = Orientation.from_random(family=family,shape=shape)
for r, theO in zip(o.reduced.flatten(),o.flatten()): for r, theO in zip(o.reduced.flatten(),o.flatten()):
assert r == theO.reduced assert r == theO.reduced
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
def test_reduced_corner_cases(self,lattice): def test_reduced_corner_cases(self,family):
# test whether there is always a sym-eq rotation that falls into the FZ # test whether there is always a sym-eq rotation that falls into the FZ
N = np.random.randint(10,40) N = np.random.randint(10,40)
size = np.ones(3)*np.pi**(2./3.) size = np.ones(3)*np.pi**(2./3.)
grid = grid_filters.coordinates0_node([N+1,N+1,N+1],size,-size*.5) grid = grid_filters.coordinates0_node([N+1,N+1,N+1],size,-size*.5)
evenly_distributed = Orientation.from_cubochoric(x=grid[:-2,:-2,:-2],lattice=lattice) evenly_distributed = Orientation.from_cubochoric(x=grid[:-2,:-2,:-2],family=family)
assert evenly_distributed.shape == evenly_distributed.reduced.shape assert evenly_distributed.shape == evenly_distributed.reduced.shape
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
@pytest.mark.parametrize('shape',[(1),(2,3),(4,3,2)]) @pytest.mark.parametrize('shape',[(1),(2,3),(4,3,2)])
@pytest.mark.parametrize('vector',np.array([[1,0,0],[1,2,3],[-1,1,-1]])) @pytest.mark.parametrize('vector',np.array([[1,0,0],[1,2,3],[-1,1,-1]]))
@pytest.mark.parametrize('proper',[True,False]) @pytest.mark.parametrize('proper',[True,False])
def test_to_SST_vectorization(self,lattice,shape,vector,proper): def test_to_SST_vectorization(self,family,shape,vector,proper):
o = Orientation.from_random(lattice=lattice,shape=shape) o = Orientation.from_random(family=family,shape=shape)
for r, theO in zip(o.to_SST(vector=vector,proper=proper).reshape((-1,3)),o.flatten()): for r, theO in zip(o.to_SST(vector=vector,proper=proper).reshape((-1,3)),o.flatten()):
assert np.allclose(r,theO.to_SST(vector=vector,proper=proper)) assert np.allclose(r,theO.to_SST(vector=vector,proper=proper))
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
@pytest.mark.parametrize('shape',[(1),(2,3),(4,3,2)]) @pytest.mark.parametrize('shape',[(1),(2,3),(4,3,2)])
@pytest.mark.parametrize('vector',np.array([[1,0,0],[1,2,3],[-1,1,-1]])) @pytest.mark.parametrize('vector',np.array([[1,0,0],[1,2,3],[-1,1,-1]]))
@pytest.mark.parametrize('proper',[True,False]) @pytest.mark.parametrize('proper',[True,False])
@pytest.mark.parametrize('in_SST',[True,False]) @pytest.mark.parametrize('in_SST',[True,False])
def test_IPF_color_vectorization(self,lattice,shape,vector,proper,in_SST): def test_IPF_color_vectorization(self,family,shape,vector,proper,in_SST):
o = Orientation.from_random(lattice=lattice,shape=shape) o = Orientation.from_random(family=family,shape=shape)
for r, theO in zip(o.IPF_color(vector,in_SST=in_SST,proper=proper).reshape((-1,3)),o.flatten()): for r, theO in zip(o.IPF_color(vector,in_SST=in_SST,proper=proper).reshape((-1,3)),o.flatten()):
assert np.allclose(r,theO.IPF_color(vector,in_SST=in_SST,proper=proper)) assert np.allclose(r,theO.IPF_color(vector,in_SST=in_SST,proper=proper))
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
@pytest.mark.parametrize('a,b',[ @pytest.mark.parametrize('a,b',[
((2,3,2),(2,3,2)), ((2,3,2),(2,3,2)),
((2,2),(4,4)), ((2,2),(4,4)),
((3,1),(1,3)), ((3,1),(1,3)),
(None,(3,)), (None,(3,)),
]) ])
def test_to_SST_blending(self,lattice,a,b): def test_to_SST_blending(self,family,a,b):
o = Orientation.from_random(lattice=lattice,shape=a) o = Orientation.from_random(family=family,shape=a)
v = np.random.random(b+(3,)) v = np.random.random(b+(3,))
blend = util.shapeblender(o.shape,b) blend = util.shapeblender(o.shape,b)
for loc in np.random.randint(0,blend,(10,len(blend))): for loc in np.random.randint(0,blend,(10,len(blend))):
@ -298,55 +302,55 @@ class TestOrientation:
{'label':'blue', 'RGB':[0,0,1],'direction':[1,1,1]}]) {'label':'blue', 'RGB':[0,0,1],'direction':[1,1,1]}])
@pytest.mark.parametrize('proper',[True,False]) @pytest.mark.parametrize('proper',[True,False])
def test_IPF_cubic(self,color,proper): def test_IPF_cubic(self,color,proper):
cube = Orientation(lattice='cubic') cube = Orientation(family='cubic')
for direction in set(permutations(np.array(color['direction']))): for direction in set(permutations(np.array(color['direction']))):
assert np.allclose(np.array(color['RGB']), assert np.allclose(np.array(color['RGB']),
cube.IPF_color(vector=np.array(direction),proper=proper)) cube.IPF_color(vector=np.array(direction),proper=proper))
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
@pytest.mark.parametrize('proper',[True,False]) @pytest.mark.parametrize('proper',[True,False])
def test_IPF_equivalent(self,set_of_quaternions,lattice,proper): def test_IPF_equivalent(self,set_of_quaternions,family,proper):
direction = np.random.random(3)*2.0-1.0 direction = np.random.random(3)*2.0-1.0
o = Orientation(rotation=set_of_quaternions,lattice=lattice).equivalent o = Orientation(rotation=set_of_quaternions,family=family).equivalent
color = o.IPF_color(vector=direction,proper=proper) color = o.IPF_color(vector=direction,proper=proper)
assert np.allclose(np.broadcast_to(color[0,...],color.shape),color) assert np.allclose(np.broadcast_to(color[0,...],color.shape),color)
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
def test_in_FZ_vectorization(self,set_of_rodrigues,lattice): def test_in_FZ_vectorization(self,set_of_rodrigues,family):
result = Orientation.from_Rodrigues_vector(rho=set_of_rodrigues.reshape((-1,4,4)),lattice=lattice).in_FZ.reshape(-1) result = Orientation.from_Rodrigues_vector(rho=set_of_rodrigues.reshape((-1,4,4)),family=family).in_FZ.reshape(-1)
for r,rho in zip(result,set_of_rodrigues[:len(result)]): for r,rho in zip(result,set_of_rodrigues[:len(result)]):
assert r == Orientation.from_Rodrigues_vector(rho=rho,lattice=lattice).in_FZ assert r == Orientation.from_Rodrigues_vector(rho=rho,family=family).in_FZ
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
def test_in_disorientation_FZ_vectorization(self,set_of_rodrigues,lattice): def test_in_disorientation_FZ_vectorization(self,set_of_rodrigues,family):
result = Orientation.from_Rodrigues_vector(rho=set_of_rodrigues.reshape((-1,4,4)), result = Orientation.from_Rodrigues_vector(rho=set_of_rodrigues.reshape((-1,4,4)),
lattice=lattice).in_disorientation_FZ.reshape(-1) family=family).in_disorientation_FZ.reshape(-1)
for r,rho in zip(result,set_of_rodrigues[:len(result)]): for r,rho in zip(result,set_of_rodrigues[:len(result)]):
assert r == Orientation.from_Rodrigues_vector(rho=rho,lattice=lattice).in_disorientation_FZ assert r == Orientation.from_Rodrigues_vector(rho=rho,family=family).in_disorientation_FZ
@pytest.mark.parametrize('proper',[True,False]) @pytest.mark.parametrize('proper',[True,False])
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
def test_in_SST_vectorization(self,lattice,proper): def test_in_SST_vectorization(self,family,proper):
vecs = np.random.rand(20,4,3) vecs = np.random.rand(20,4,3)
result = Orientation(lattice=lattice).in_SST(vecs,proper).flatten() result = Orientation(family=family).in_SST(vecs,proper).flatten()
for r,v in zip(result,vecs.reshape((-1,3))): for r,v in zip(result,vecs.reshape((-1,3))):
assert np.all(r == Orientation(lattice=lattice).in_SST(v,proper)) assert np.all(r == Orientation(family=family).in_SST(v,proper))
@pytest.mark.parametrize('invalid_lattice',['fcc','bcc','hello']) @pytest.mark.parametrize('invalid_family',['fcc','bcc','hello'])
def test_invalid_lattice_init(self,invalid_lattice): def test_invalid_lattice_init(self,invalid_family):
with pytest.raises(KeyError): with pytest.raises(KeyError):
Orientation(lattice=invalid_lattice) # noqa Orientation(family=invalid_family) # noqa
@pytest.mark.parametrize('invalid_family',[None,'fcc','bcc','hello']) @pytest.mark.parametrize('invalid_family',[None,'fcc','bcc','hello'])
def test_invalid_symmetry_family(self,invalid_family): def test_invalid_symmetry_family(self,invalid_family):
with pytest.raises(KeyError): with pytest.raises(KeyError):
o = Orientation(lattice='cubic') o = Orientation(family='cubic')
o.family = invalid_family o.family = invalid_family
o.symmetry_operations # noqa o.symmetry_operations # noqa
def test_invalid_rot(self): def test_invalid_rot(self):
with pytest.raises(TypeError): with pytest.raises(TypeError):
Orientation.from_random(lattice='cubic') * np.ones(3) Orientation.from_random(family='cubic') * np.ones(3)
def test_missing_symmetry_immutable(self): def test_missing_symmetry_immutable(self):
with pytest.raises(KeyError): with pytest.raises(KeyError):
@ -388,14 +392,14 @@ class TestOrientation:
a=a,b=b,c=c, a=a,b=b,c=c,
alpha=alpha,beta=beta,gamma=gamma).related(relation) # noqa alpha=alpha,beta=beta,gamma=gamma).related(relation) # noqa
@pytest.mark.parametrize('lattice',crystal_families) @pytest.mark.parametrize('family',crystal_families)
@pytest.mark.parametrize('proper',[True,False]) @pytest.mark.parametrize('proper',[True,False])
def test_in_SST(self,lattice,proper): def test_in_SST(self,family,proper):
assert Orientation(lattice=lattice).in_SST(np.zeros(3),proper) assert Orientation(family=family).in_SST(np.zeros(3),proper)
@pytest.mark.parametrize('function',['in_SST','IPF_color']) @pytest.mark.parametrize('function',['in_SST','IPF_color'])
def test_invalid_argument(self,function): def test_invalid_argument(self,function):
o = Orientation(lattice='cubic') # noqa o = Orientation(family='cubic') # noqa
with pytest.raises(ValueError): with pytest.raises(ValueError):
eval(f'o.{function}(np.ones(4))') eval(f'o.{function}(np.ones(4))')
@ -409,7 +413,7 @@ class TestOrientation:
def test_relationship_vectorize(self,set_of_quaternions,lattice,model): def test_relationship_vectorize(self,set_of_quaternions,lattice,model):
r = Orientation(rotation=set_of_quaternions[:200].reshape((50,4,4)),lattice=lattice).related(model) r = Orientation(rotation=set_of_quaternions[:200].reshape((50,4,4)),lattice=lattice).related(model)
for i in range(200): for i in range(200):
assert (r.reshape((-1,200))[:,i] == Orientation(set_of_quaternions[i],lattice).related(model)).all() assert (r.reshape((-1,200))[:,i] == Orientation(set_of_quaternions[i],lattice=lattice).related(model)).all()
@pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch']) @pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch'])
@pytest.mark.parametrize('lattice',['cF','cI']) @pytest.mark.parametrize('lattice',['cF','cI'])
@ -512,12 +516,12 @@ class TestOrientation:
== o.shape + (o.symmetry_operations.shape if with_symmetry else ()) + vector.shape == o.shape + (o.symmetry_operations.shape if with_symmetry else ()) + vector.shape
@pytest.mark.parametrize('lattice',['hP','cI','cF']) @pytest.mark.parametrize('lattice',['hP','cI','cF'])
@pytest.mark.parametrize('mode',['slip','twin']) def test_Schmid(self,update,ref_path,lattice):
def test_Schmid(self,update,ref_path,lattice,mode):
L = Orientation(lattice=lattice) L = Orientation(lattice=lattice)
reference = ref_path/f'{lattice}_{mode}.txt' for mode in ['slip','twin']: # ToDo test tI
P = L.Schmid(mode) reference = ref_path/f'{lattice}_{mode}.txt'
if update: P = L.Schmid(mode)
table = Table(P.reshape(-1,9),{'Schmid':(3,3,)}) if update:
table.save(reference) table = Table(P.reshape(-1,9),{'Schmid':(3,3,)})
assert np.allclose(P,Table.load(reference).get('Schmid')) table.save(reference)
assert np.allclose(P,Table.load(reference).get('Schmid'))