diff --git a/src/math.f90 b/src/math.f90 index 855dfe755..71a040f3b 100644 --- a/src/math.f90 +++ b/src/math.f90 @@ -121,24 +121,16 @@ module math math_sym3333to66, & math_66toSym3333, & math_Voigt66to3333, & - math_qRand, & math_qMul, & - math_qDot, & math_qConj, & - math_qInv, & math_qRot, & math_RtoEuler, & math_RtoQ, & math_EulerToR, & math_axisAngleToR, & - math_EulerAxisAngleToQ, & - math_axisAngleToQ, & math_qToRodrig, & - math_qToEuler, & - math_qToAxisAngle, & math_EulerMisorientation, & math_sampleGaussVar, & - math_symmetricEulers, & math_eigenvectorBasisSym33, & math_eigenvectorBasisSym33_log, & math_eigenvectorBasisSym, & @@ -214,33 +206,6 @@ subroutine math_check implicit none character(len=64) :: error_msg - real(pReal), dimension(3,3) :: R,R2 - real(pReal), dimension(3) :: Eulers - real(pReal), dimension(4) :: q,q2,axisangle - - ! --- check rotation dictionary --- - - q = math_qRand() ! random quaternion - - ! +++ q -> a -> q +++ - axisangle = math_qToAxisAngle(q) - q2 = math_axisAngleToQ(axisangle(1:3),axisangle(4)) - if ( any(abs( q-q2) > tol_math_check) .and. & - any(abs(-q-q2) > tol_math_check) ) then - write (error_msg, '(a,e14.6)' ) & - 'quat -> axisAngle -> quat maximum deviation ',min(maxval(abs( q-q2)),maxval(abs(-q-q2))) - call IO_error(401,ext_msg=error_msg) - endif - - ! +++ R -> euler -> R +++ - Eulers = math_RtoEuler(R) - R2 = math_EulerToR(Eulers) - if ( any(abs( R-R2) > tol_math_check) ) then - write (error_msg, '(a,e14.6)' ) & - 'R -> euler -> R maximum deviation ',maxval(abs( R-R2)) - call IO_error(401,ext_msg=error_msg) - endif - ! +++ check vector expansion +++ if (any(abs([1.0_pReal,2.0_pReal,2.0_pReal,3.0_pReal,3.0_pReal,3.0_pReal] - & math_expand([1.0_pReal,2.0_pReal,3.0_pReal],[1,2,3,0])) > tol_math_check)) then @@ -1195,27 +1160,6 @@ pure function math_Voigt66to3333(m66) end function math_Voigt66to3333 -!-------------------------------------------------------------------------------------------------- -!> @brief random quaternion -! http://math.stackexchange.com/questions/131336/uniform-random-quaternion-in-a-restricted-angle-range -! K. Shoemake. Uniform random rotations. In D. Kirk, editor, Graphics Gems III, pages 124-132. -! Academic, New York, 1992. -!-------------------------------------------------------------------------------------------------- -function math_qRand() - - implicit none - real(pReal), dimension(4) :: math_qRand - real(pReal), dimension(3) :: rnd - - rnd = halton([8,4,9]) - math_qRand = [cos(2.0_pReal*PI*rnd(1))*sqrt(rnd(3)), & - sin(2.0_pReal*PI*rnd(2))*sqrt(1.0_pReal-rnd(3)), & - cos(2.0_pReal*PI*rnd(2))*sqrt(1.0_pReal-rnd(3)), & - sin(2.0_pReal*PI*rnd(1))*sqrt(rnd(3))] - -end function math_qRand - - !-------------------------------------------------------------------------------------------------- !> @brief quaternion multiplication q1xq2 = q12 !-------------------------------------------------------------------------------------------------- @@ -1233,19 +1177,6 @@ pure function math_qMul(A,B) end function math_qMul -!-------------------------------------------------------------------------------------------------- -!> @brief quaternion dotproduct -!-------------------------------------------------------------------------------------------------- -real(pReal) pure function math_qDot(A,B) - - implicit none - real(pReal), dimension(4), intent(in) :: A, B - - math_qDot = sum(A*B) - -end function math_qDot - - !-------------------------------------------------------------------------------------------------- !> @brief quaternion conjugation !-------------------------------------------------------------------------------------------------- @@ -1260,39 +1191,6 @@ pure function math_qConj(Q) end function math_qConj -!-------------------------------------------------------------------------------------------------- -!> @brief quaternion norm -!-------------------------------------------------------------------------------------------------- -real(pReal) pure function math_qNorm(Q) - - implicit none - real(pReal), dimension(4), intent(in) :: Q - - math_qNorm = norm2(Q) - -end function math_qNorm - - -!-------------------------------------------------------------------------------------------------- -!> @brief quaternion inversion -!-------------------------------------------------------------------------------------------------- -pure function math_qInv(Q) - use prec, only: & - dNeq0 - - implicit none - real(pReal), dimension(4), intent(in) :: Q - real(pReal), dimension(4) :: math_qInv - real(pReal) :: squareNorm - - math_qInv = 0.0_pReal - - squareNorm = math_qDot(Q,Q) - if (dNeq0(squareNorm)) math_qInv = math_qConj(Q) / squareNorm - -end function math_qInv - - !-------------------------------------------------------------------------------------------------- !> @brief action of a quaternion on a vector (rotate vector v with Q) !-------------------------------------------------------------------------------------------------- @@ -1490,112 +1388,6 @@ pure function math_axisAngleToR(axis,omega) end function math_axisAngleToR -!-------------------------------------------------------------------------------------------------- -!> @brief quaternion (w+ix+jy+kz) from Euler axis and angle (in radians) -!> @details quaternion is meant to represent a PASSIVE rotation -!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions) -!> @details formula for active rotation taken from -!> @details http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters -!-------------------------------------------------------------------------------------------------- -pure function math_EulerAxisAngleToQ(axis,omega) - - implicit none - real(pReal), dimension(4) :: math_EulerAxisAngleToQ - real(pReal), dimension(3), intent(in) :: axis - real(pReal), intent(in) :: omega - - math_EulerAxisAngleToQ = math_qConj(math_axisAngleToQ(axis,omega)) ! convert to passive rotation - -end function math_EulerAxisAngleToQ - - -!-------------------------------------------------------------------------------------------------- -!> @brief quaternion (w+ix+jy+kz) from axis and angle (in radians) -!> @details quaternion is meant to represent an ACTIVE rotation -!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions) -!> @details formula for active rotation taken from -!> @details http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters -!> @details equivalent to eu2qu (P=+1) from "D Rowenhorst et al. Consistent representations of and -!> @details conversions between 3D rotations, Model. Simul. Mater. Sci. Eng. 23-8 (2015)" -!-------------------------------------------------------------------------------------------------- -pure function math_axisAngleToQ(axis,omega) - - implicit none - real(pReal), dimension(4) :: math_axisAngleToQ - real(pReal), dimension(3), intent(in) :: axis - real(pReal), intent(in) :: omega - real(pReal), dimension(3) :: axisNrm - real(pReal) :: norm - - norm = norm2(axis) - wellDefined: if (norm > 1.0e-8_pReal) then - axisNrm = axis/norm ! normalize axis to be sure - math_axisAngleToQ = [cos(0.5_pReal*omega), sin(0.5_pReal*omega) * axisNrm(1:3)] - else wellDefined - math_axisAngleToQ = [1.0_pReal,0.0_pReal,0.0_pReal,0.0_pReal] - endif wellDefined - -end function math_axisAngleToQ - - -!-------------------------------------------------------------------------------------------------- -!> @brief 3-1-3 Euler angles (in radians) from quaternion (w+ix+jy+kz) -!> @details quaternion is meant to represent a PASSIVE rotation, -!> @details composed of INTRINSIC rotations around the axes of the -!> @details rotating reference frame -!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions) -!-------------------------------------------------------------------------------------------------- -pure function math_qToEuler(qPassive) - - implicit none - real(pReal), dimension(4), intent(in) :: qPassive - real(pReal), dimension(4) :: q - real(pReal), dimension(3) :: math_qToEuler - - q = math_qConj(qPassive) ! convert to active rotation, since formulas are defined for active rotations - - math_qToEuler(2) = acos(1.0_pReal-2.0_pReal*(q(2)**2+q(3)**2)) - - if (abs(math_qToEuler(2)) < 1.0e-6_pReal) then - math_qToEuler(1) = sign(2.0_pReal*acos(math_clip(q(1),-1.0_pReal, 1.0_pReal)),q(4)) - math_qToEuler(3) = 0.0_pReal - else - math_qToEuler(1) = atan2(+q(1)*q(3)+q(2)*q(4), q(1)*q(2)-q(3)*q(4)) - math_qToEuler(3) = atan2(-q(1)*q(3)+q(2)*q(4), q(1)*q(2)+q(3)*q(4)) - endif - - math_qToEuler = merge(math_qToEuler + [2.0_pReal*PI, PI, 2.0_pReal*PI], & ! ensure correct range - math_qToEuler, math_qToEuler<0.0_pReal) - -end function math_qToEuler - - -!-------------------------------------------------------------------------------------------------- -!> @brief axis-angle (x, y, z, ang in radians) from quaternion (w+ix+jy+kz) -!> @details quaternion is meant to represent an ACTIVE rotation -!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions) -!> @details formula for active rotation taken from -!> @details http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters -!-------------------------------------------------------------------------------------------------- -pure function math_qToAxisAngle(Q) - - implicit none - real(pReal), dimension(4), intent(in) :: Q - real(pReal) :: halfAngle, sinHalfAngle - real(pReal), dimension(4) :: math_qToAxisAngle - - halfAngle = acos(math_clip(Q(1),-1.0_pReal,1.0_pReal)) - sinHalfAngle = sin(halfAngle) - - smallRotation: if (sinHalfAngle <= 1.0e-4_pReal) then - math_qToAxisAngle = 0.0_pReal - else smallRotation - math_qToAxisAngle= [ Q(2:4)/sinHalfAngle, halfAngle*2.0_pReal] - endif smallRotation - -end function math_qToAxisAngle - - !-------------------------------------------------------------------------------------------------- !> @brief Rodrigues vector (x, y, z) from unit quaternion (w+ix+jy+kz) !-------------------------------------------------------------------------------------------------- @@ -1663,36 +1455,6 @@ real(pReal) function math_sampleGaussVar(meanvalue, stddev, width) end function math_sampleGaussVar -!-------------------------------------------------------------------------------------------------- -!> @brief symmetrically equivalent Euler angles for given sample symmetry -!> @detail 1 (equivalent to != 2 and !=4):triclinic, 2:monoclinic, 4:orthotropic -!-------------------------------------------------------------------------------------------------- -pure function math_symmetricEulers(sym,Euler) - - implicit none - integer, intent(in) :: sym !< symmetry Class - real(pReal), dimension(3), intent(in) :: Euler - real(pReal), dimension(3,3) :: math_symmetricEulers - - math_symmetricEulers = transpose(reshape([PI+Euler(1), PI-Euler(1), 2.0_pReal*PI-Euler(1), & - Euler(2), PI-Euler(2), PI -Euler(2), & - Euler(3), PI+Euler(3), PI +Euler(3)],[3,3])) ! transpose is needed to have symbolic notation instead of column-major - - math_symmetricEulers = modulo(math_symmetricEulers,2.0_pReal*pi) - - select case (sym) - case (4) ! orthotropic: all done - - case (2) ! monoclinic: return only first - math_symmetricEulers(1:3,2:3) = 0.0_pReal - - case default ! triclinic: return blank - math_symmetricEulers = 0.0_pReal - end select - -end function math_symmetricEulers - - !-------------------------------------------------------------------------------------------------- !> @brief eigenvalues and eigenvectors of symmetric matrix m ! ToDo: has wrong oder of arguments