adjusting style + documentation
This commit is contained in:
parent
19a73bbf3b
commit
e2437ee9b5
|
@ -119,7 +119,8 @@ class Crystal():
|
||||||
'α={:.5g}°, β={:.5g}°, γ={:.5g}°'.format(*np.degrees(self.parameters[3:]))])
|
'α={:.5g}°, β={:.5g}°, γ={:.5g}°'.format(*np.degrees(self.parameters[3:]))])
|
||||||
|
|
||||||
|
|
||||||
def __eq__(self,other):
|
def __eq__(self,
|
||||||
|
other: object) -> bool:
|
||||||
"""
|
"""
|
||||||
Equal to other.
|
Equal to other.
|
||||||
|
|
||||||
|
@ -129,6 +130,8 @@ class Crystal():
|
||||||
Crystal to check for equality.
|
Crystal to check for equality.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
if not isinstance(other, Crystal):
|
||||||
|
return NotImplemented
|
||||||
return self.lattice == other.lattice and \
|
return self.lattice == other.lattice and \
|
||||||
self.parameters == other.parameters and \
|
self.parameters == other.parameters and \
|
||||||
self.family == other.family
|
self.family == other.family
|
||||||
|
|
|
@ -122,7 +122,9 @@ def rotation(T: _np.ndarray) -> _rotation.Rotation:
|
||||||
return _rotation.Rotation.from_matrix(_polar_decomposition(T,'R')[0])
|
return _rotation.Rotation.from_matrix(_polar_decomposition(T,'R')[0])
|
||||||
|
|
||||||
|
|
||||||
def strain(F: _np.ndarray, t: str, m: float) -> _np.ndarray:
|
def strain(F: _np.ndarray,
|
||||||
|
t: str,
|
||||||
|
m: float) -> _np.ndarray:
|
||||||
"""
|
"""
|
||||||
Calculate strain tensor (Seth–Hill family).
|
Calculate strain tensor (Seth–Hill family).
|
||||||
|
|
||||||
|
@ -162,7 +164,8 @@ def strain(F: _np.ndarray, t: str, m: float) -> _np.ndarray:
|
||||||
return eps
|
return eps
|
||||||
|
|
||||||
|
|
||||||
def stress_Cauchy(P: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
def stress_Cauchy(P: _np.ndarray,
|
||||||
|
F: _np.ndarray) -> _np.ndarray:
|
||||||
"""
|
"""
|
||||||
Calculate the Cauchy stress (true stress).
|
Calculate the Cauchy stress (true stress).
|
||||||
|
|
||||||
|
@ -184,7 +187,8 @@ def stress_Cauchy(P: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||||
return _tensor.symmetric(_np.einsum('...,...ij,...kj',1.0/_np.linalg.det(F),P,F))
|
return _tensor.symmetric(_np.einsum('...,...ij,...kj',1.0/_np.linalg.det(F),P,F))
|
||||||
|
|
||||||
|
|
||||||
def stress_second_Piola_Kirchhoff(P: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
def stress_second_Piola_Kirchhoff(P: _np.ndarray,
|
||||||
|
F: _np.ndarray) -> _np.ndarray:
|
||||||
"""
|
"""
|
||||||
Calculate the second Piola-Kirchhoff stress.
|
Calculate the second Piola-Kirchhoff stress.
|
||||||
|
|
||||||
|
@ -243,7 +247,8 @@ def stretch_right(T: _np.ndarray) -> _np.ndarray:
|
||||||
return _polar_decomposition(T,'U')[0]
|
return _polar_decomposition(T,'U')[0]
|
||||||
|
|
||||||
|
|
||||||
def _polar_decomposition(T: _np.ndarray, requested: _Sequence[str]) -> tuple:
|
def _polar_decomposition(T: _np.ndarray,
|
||||||
|
requested: _Sequence[str]) -> tuple:
|
||||||
"""
|
"""
|
||||||
Perform singular value decomposition.
|
Perform singular value decomposition.
|
||||||
|
|
||||||
|
@ -251,7 +256,7 @@ def _polar_decomposition(T: _np.ndarray, requested: _Sequence[str]) -> tuple:
|
||||||
----------
|
----------
|
||||||
T : numpy.ndarray, shape (...,3,3)
|
T : numpy.ndarray, shape (...,3,3)
|
||||||
Tensor of which the singular values are computed.
|
Tensor of which the singular values are computed.
|
||||||
requested : iterable of str
|
requested : sequence of {'R', 'U', 'V'}
|
||||||
Requested outputs: ‘R’ for the rotation tensor,
|
Requested outputs: ‘R’ for the rotation tensor,
|
||||||
‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
||||||
|
|
||||||
|
@ -273,7 +278,8 @@ def _polar_decomposition(T: _np.ndarray, requested: _Sequence[str]) -> tuple:
|
||||||
return tuple(output)
|
return tuple(output)
|
||||||
|
|
||||||
|
|
||||||
def _equivalent_Mises(T_sym: _np.ndarray, s: float) -> _np.ndarray:
|
def _equivalent_Mises(T_sym: _np.ndarray,
|
||||||
|
s: float) -> _np.ndarray:
|
||||||
"""
|
"""
|
||||||
Base equation for Mises equivalent of a stress or strain tensor.
|
Base equation for Mises equivalent of a stress or strain tensor.
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue