adjusting style + documentation
This commit is contained in:
parent
19a73bbf3b
commit
e2437ee9b5
|
@ -119,7 +119,8 @@ class Crystal():
|
|||
'α={:.5g}°, β={:.5g}°, γ={:.5g}°'.format(*np.degrees(self.parameters[3:]))])
|
||||
|
||||
|
||||
def __eq__(self,other):
|
||||
def __eq__(self,
|
||||
other: object) -> bool:
|
||||
"""
|
||||
Equal to other.
|
||||
|
||||
|
@ -129,6 +130,8 @@ class Crystal():
|
|||
Crystal to check for equality.
|
||||
|
||||
"""
|
||||
if not isinstance(other, Crystal):
|
||||
return NotImplemented
|
||||
return self.lattice == other.lattice and \
|
||||
self.parameters == other.parameters and \
|
||||
self.family == other.family
|
||||
|
|
|
@ -122,7 +122,9 @@ def rotation(T: _np.ndarray) -> _rotation.Rotation:
|
|||
return _rotation.Rotation.from_matrix(_polar_decomposition(T,'R')[0])
|
||||
|
||||
|
||||
def strain(F: _np.ndarray, t: str, m: float) -> _np.ndarray:
|
||||
def strain(F: _np.ndarray,
|
||||
t: str,
|
||||
m: float) -> _np.ndarray:
|
||||
"""
|
||||
Calculate strain tensor (Seth–Hill family).
|
||||
|
||||
|
@ -162,7 +164,8 @@ def strain(F: _np.ndarray, t: str, m: float) -> _np.ndarray:
|
|||
return eps
|
||||
|
||||
|
||||
def stress_Cauchy(P: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||
def stress_Cauchy(P: _np.ndarray,
|
||||
F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Calculate the Cauchy stress (true stress).
|
||||
|
||||
|
@ -184,7 +187,8 @@ def stress_Cauchy(P: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
|||
return _tensor.symmetric(_np.einsum('...,...ij,...kj',1.0/_np.linalg.det(F),P,F))
|
||||
|
||||
|
||||
def stress_second_Piola_Kirchhoff(P: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||
def stress_second_Piola_Kirchhoff(P: _np.ndarray,
|
||||
F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Calculate the second Piola-Kirchhoff stress.
|
||||
|
||||
|
@ -243,7 +247,8 @@ def stretch_right(T: _np.ndarray) -> _np.ndarray:
|
|||
return _polar_decomposition(T,'U')[0]
|
||||
|
||||
|
||||
def _polar_decomposition(T: _np.ndarray, requested: _Sequence[str]) -> tuple:
|
||||
def _polar_decomposition(T: _np.ndarray,
|
||||
requested: _Sequence[str]) -> tuple:
|
||||
"""
|
||||
Perform singular value decomposition.
|
||||
|
||||
|
@ -251,7 +256,7 @@ def _polar_decomposition(T: _np.ndarray, requested: _Sequence[str]) -> tuple:
|
|||
----------
|
||||
T : numpy.ndarray, shape (...,3,3)
|
||||
Tensor of which the singular values are computed.
|
||||
requested : iterable of str
|
||||
requested : sequence of {'R', 'U', 'V'}
|
||||
Requested outputs: ‘R’ for the rotation tensor,
|
||||
‘V’ for left stretch tensor and ‘U’ for right stretch tensor.
|
||||
|
||||
|
@ -273,7 +278,8 @@ def _polar_decomposition(T: _np.ndarray, requested: _Sequence[str]) -> tuple:
|
|||
return tuple(output)
|
||||
|
||||
|
||||
def _equivalent_Mises(T_sym: _np.ndarray, s: float) -> _np.ndarray:
|
||||
def _equivalent_Mises(T_sym: _np.ndarray,
|
||||
s: float) -> _np.ndarray:
|
||||
"""
|
||||
Base equation for Mises equivalent of a stress or strain tensor.
|
||||
|
||||
|
|
Loading…
Reference in New Issue