next round in modularizzation of solvers

This commit is contained in:
Martin Diehl 2012-07-24 17:07:10 +00:00
parent 882c44a61d
commit e1faad8bcf
5 changed files with 489 additions and 1091 deletions

View File

@ -1,612 +0,0 @@
! Copyright 2012 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced Material Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!##################################################################################################
!* $Id$
!##################################################################################################
! Material subroutine for BVP solution using spectral method
!
! Run 'DAMASK_spectral.exe --help' to get usage hints
!
! written by P. Eisenlohr,
! F. Roters,
! L. Hantcherli,
! W.A. Counts,
! D.D. Tjahjanto,
! C. Kords,
! M. Diehl,
! R. Lebensohn
!
! MPI fuer Eisenforschung, Duesseldorf
#include "spectral_quit.f90"
program DAMASK_spectral
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use DAMASK_interface, only: &
DAMASK_interface_init, &
loadCaseFile, &
geometryFile, &
getSolverWorkingDirectoryName, &
getSolverJobName, &
appendToOutFile
use prec, only: &
pInt, &
pReal, &
DAMASK_NaN
use IO, only: &
IO_isBlank, &
IO_open_file, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_error, &
IO_lc, &
IO_read_jobBinaryFile, &
IO_write_jobBinaryFile
use debug, only: &
debug_level, &
debug_spectral, &
debug_levelBasic, &
debug_spectralDivergence, &
debug_spectralRestart, &
debug_spectralFFTW, &
debug_reset, &
debug_info
use math
use mesh, only : &
mesh_spectral_getResolution, &
mesh_spectral_getDimension, &
mesh_spectral_getHomogenization
use CPFEM, only: &
CPFEM_general, &
CPFEM_initAll
use FEsolving, only: &
restartWrite, &
restartInc
use numerics, only: &
err_div_tol, &
err_stress_tolrel, &
err_stress_tolabs, &
rotation_tol, &
itmax,&
itmin, &
memory_efficient, &
divergence_correction, &
DAMASK_NumThreadsInt, &
fftw_planner_flag, &
fftw_timelimit
use homogenization, only: &
materialpoint_sizeResults, &
materialpoint_results
implicit none
! field in real an fourier space
real(pReal), dimension(:,:,:,:,:), pointer :: P_real, deltaF_real ! field in real space (pointer)
complex(pReal), dimension(:,:,:,:,:), pointer :: P_fourier,deltaF_fourier ! field in fourier space (pointer)
!--------------------------------------------------------------------------------------------------
! loop variables, convergence etc.
real(pReal) :: time = 0.0_pReal, time0 = 0.0_pReal, timeinc = 1.0_pReal, timeinc_old = 0.0_pReal ! elapsed time, begin of interval, time interval
real(pReal) :: guessmode, err_div, err_stress, err_stress_tol
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
complex(pReal), dimension(3) :: temp3_Complex
complex(pReal), dimension(3,3) :: temp33_Complex
real(pReal), dimension(3,3) :: temp33_Real
integer(pInt) :: i, j, k, l, m, n, p, errorID
integer(pInt) :: N_Loadcases, loadcase = 0_pInt, inc, iter, ielem, CPFEM_mode=1_pInt, &
ierr, totalIncsCounter = 0_pInt,&
notConvergedCounter = 0_pInt, convergedCounter = 0_pInt
logical :: errmatinv
real(pReal) :: defgradDet
character(len=6) :: loadcase_string
!--------------------------------------------------------------------------------------------------
!variables controlling debugging
logical :: debugGeneral, debugDivergence, debugRestart, debugFFTW
!--------------------------------------------------------------------------------------------------
!variables for additional output due to general debugging
real(pReal) :: defgradDetMax, defgradDetMin, maxCorrectionSym, maxCorrectionSkew
!--------------------------------------------------------------------------------------------------
! variables for additional output of divergence calculations
type(C_PTR) :: divergence, plan_divergence
real(pReal), dimension(:,:,:,:), pointer :: divergence_real
complex(pReal), dimension(:,:,:,:), pointer :: divergence_fourier
real(pReal), dimension(:,:,:,:), allocatable :: divergence_post
real(pReal) :: pstress_av_L2, err_div_RMS, err_real_div_RMS, err_post_div_RMS,&
err_div_max, err_real_div_max
!--------------------------------------------------------------------------------------------------
! variables for debugging fft using a scalar field
type(C_PTR) :: scalarField_realC, scalarField_fourierC,&
plan_scalarField_forth, plan_scalarField_back
complex(pReal), dimension(:,:,:), pointer :: scalarField_real
complex(pReal), dimension(:,:,:), pointer :: scalarField_fourier
integer(pInt) :: row, column
!##################################################################################################
! reading of information from load case file and geometry file
!##################################################################################################
subroutine init
#ifdef PETSC
integer :: ierr_psc
call PetscInitialize(PETSC_NULL_CHARACTER, ierr_psc)
#endif
call DAMASK_interface_init
write(6,'(a)') ''
write(6,'(a)') ' <<<+- DAMASK_spectral init -+>>>'
write(6,'(a)') ' $Id$'
#include "compilation_info.f90"
write(6,'(a)') ''
!--------------------------------------------------------------------------------------------------
! debugging parameters
debugGeneral = iand(debug_level(debug_spectral),debug_levelBasic) /= 0
debugDivergence = iand(debug_level(debug_spectral),debug_spectralDivergence) /= 0
debugRestart = iand(debug_level(debug_spectral),debug_spectralRestart) /= 0
debugFFTW = iand(debug_level(debug_spectral),debug_spectralFFTW) /= 0
!##################################################################################################
! initialization
!##################################################################################################
call c_f_pointer(tensorField, P_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for a real representation on tensorField
call c_f_pointer(tensorField, deltaF_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for a real representation on tensorField
call c_f_pointer(tensorField, P_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for a complex representation on tensorField
call c_f_pointer(tensorField, deltaF_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for a complex representation on tensorField
!--------------------------------------------------------------------------------------------------
! creating plans
plan_stress = fftw_plan_many_dft_r2c(3,[ res(3),res(2) ,res(1)],9,& ! dimensions , length in each dimension in reversed order
P_real,[ res(3),res(2) ,res(1)+2_pInt],& ! input data , physical length in each dimension in reversed order
1, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions
P_fourier,[ res(3),res(2) ,res1_red],&
1, res(3)*res(2)* res1_red,fftw_planner_flag)
plan_correction =fftw_plan_many_dft_c2r(3,[ res(3),res(2) ,res(1)],9,&
deltaF_fourier,[ res(3),res(2) ,res1_red],&
1, res(3)*res(2)* res1_red,&
deltaF_real,[ res(3),res(2) ,res(1)+2_pInt],&
1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
!--------------------------------------------------------------------------------------------------
! in case of no restart get reference material stiffness and init fields to no deformation
if (restartInc == 1_pInt) then
ielem = 0_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
F(i,j,k,1:3,1:3) = math_I3
F_lastInc(i,j,k,1:3,1:3) = math_I3
coordinates(i,j,k,1:3) = geomdim/real(res,pReal)*real([i,j,k],pReal) - geomdim/real(2_pInt*res,pReal)
call CPFEM_general(2_pInt,coordinates(i,j,k,1:3),math_I3,math_I3,temperature(i,j,k),&
0.0_pReal,ielem,1_pInt,sigma,dsde,P_real(i,j,k,1:3,1:3),dPdF)
C = C + dPdF
enddo; enddo; enddo
C = C * wgt
C_ref = C
call IO_write_jobBinaryFile(777,'C_ref',size(C_ref))
write (777,rec=1) C_ref
close(777)
!--------------------------------------------------------------------------------------------------
! restore deformation gradient and stiffness from saved state
elseif (restartInc > 1_pInt) then ! using old values from file
if (debugRestart) write(6,'(a,i6,a)') 'Reading values of increment ',&
restartInc - 1_pInt,' from file'
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',&
trim(getSolverJobName()),size(F))
read (777,rec=1) F
close (777)
F_lastInc = F
F_aim = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
F_aim = F_aim + F(i,j,k,1:3,1:3) ! calculating old average deformation
enddo; enddo; enddo
F_aim = F_aim * wgt
F_aim_lastInc = F_aim
coordinates = 0.0 ! change it later!!!
call IO_read_jobBinaryFile(777,'C_ref',trim(getSolverJobName()),size(C_ref))
read (777,rec=1) C_ref
close (777)
call IO_read_jobBinaryFile(777,'C',trim(getSolverJobName()),size(C))
read (777,rec=1) C
close (777)
CPFEM_mode = 2_pInt
endif
end subroutine init
subroutine solution(guessmode, F_aim,F_aimLastInc, BC_stress, mask_stress)
!--------------------------------------------------------------------------------------------------
! update local deformation gradient and coordinates
deltaF_aim = math_rotate_backward33(deltaF_aim,bc(loadcase)%rotation)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
temp33_Real = F(i,j,k,1:3,1:3)
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
+ guessmode * (F(i,j,k,1:3,1:3) - F_lastInc(i,j,k,1:3,1:3))& ! guessing...
*timeinc/timeinc_old &
+ (1.0_pReal-guessmode) * deltaF_aim ! if not guessing, use prescribed average deformation where applicable
F_lastInc(i,j,k,1:3,1:3) = temp33_Real
enddo; enddo; enddo
call deformed_fft(res,geomdim,math_rotate_backward33(F_aim,bc(loadcase)%rotation),& ! calculate current coordinates
1.0_pReal,F_lastInc,coordinates)
guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase
iter = 0_pInt
err_div = huge(err_div_tol) ! go into loop
!##################################################################################################
! convergence loop (looping over iterations)
!##################################################################################################
do while((iter < itmax .and. (err_div > err_div_tol .or. err_stress > err_stress_tol))&
.or. iter < itmin)
iter = iter + 1_pInt
!--------------------------------------------------------------------------------------------------
! report begin of new iteration
write(6,'(a)') ''
write(6,'(a)') '=================================================================='
write(6,'(6(a,i6.6))') 'Loadcase ',loadcase,' Inc. ',inc,'/',bc(loadcase)%incs,&
' @ Iter. ',itmin,' < ',iter,' < ',itmax
write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'deformation gradient aim =',&
math_transpose33(F_aim)
write(6,'(a)') ''
write(6,'(a)') '... update stress field P(F) .....................................'
if (restartWrite) write(6,'(a)') 'writing restart info for last increment'
F_aim_lab_lastIter = math_rotate_backward33(F_aim,bc(loadcase)%rotation)
!--------------------------------------------------------------------------------------------------
! evaluate constitutive response
ielem = 0_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(3_pInt,& ! collect cycle
coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),F(i,j,k,1:3,1:3), &
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde,&
P_real(i,j,k,1:3,1:3),dPdF)
enddo; enddo; enddo
P_real = 0.0_pReal ! needed because of the padding for FFTW
C = 0.0_pReal
ielem = 0_pInt
call debug_reset()
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1,
coordinates(i,j,k,1:3),F_lastInc(i,j,k,1:3,1:3), F(i,j,k,1:3,1:3), & ! others get 2 (saves winding forward effort)
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde, &
P_real(i,j,k,1:3,1:3),dPdF)
CPFEM_mode = 2_pInt
C = C + dPdF
enddo; enddo; enddo
call debug_info()
! for test of regridding
! if( bc(loadcase)%restartFrequency > 0_pInt .and. &
! mod(inc-1,bc(loadcase)%restartFrequency) == 0_pInt .and. &
! restartInc/=inc) call quit(-1*(restartInc+1)) ! trigger exit to regrid
!--------------------------------------------------------------------------------------------------
! copy one component of the stress field to to a single FT and check for mismatch
if (debugFFTW) then
row = (mod(totalIncsCounter+iter-2_pInt,9_pInt))/3_pInt + 1_pInt ! go through the elements of the tensors, controlled by totalIncsCounter and iter, starting at 1
column = (mod(totalIncsCounter+iter-2_pInt,3_pInt)) + 1_pInt
scalarField_real(1:res(1),1:res(2),1:res(3)) =& ! store the selected component
cmplx(P_real(1:res(1),1:res(2),1:res(3),row,column),0.0_pReal,pReal)
endif
!--------------------------------------------------------------------------------------------------
! call function to calculate divergence from math (for post processing) to check results
if (debugDivergence) &
call divergence_fft(res,virt_dim,3_pInt,&
P_real(1:res(1),1:res(2),1:res(3),1:3,1:3),divergence_post) ! padding
!--------------------------------------------------------------------------------------------------
! doing the FT because it simplifies calculation of average stress in real space also
call fftw_execute_dft_r2c(plan_stress,P_real,P_fourier)
P_av_lab = real(P_fourier(1,1,1,1:3,1:3),pReal)*wgt
P_av = math_rotate_forward33(P_av_lab,bc(loadcase)%rotation)
write (6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'Piola-Kirchhoff stress / MPa =',&
math_transpose33(P_av)/1.e6_pReal
!--------------------------------------------------------------------------------------------------
! comparing 1 and 3x3 FT results
if (debugFFTW) then
call fftw_execute_dft(plan_scalarField_forth,scalarField_real,scalarField_fourier)
write(6,'(a,i1,1x,i1)') 'checking FT results of compontent ', row, column
write(6,'(a,2(es11.4,1x))') 'max FT relative error = ',&
maxval( real((scalarField_fourier(1:res1_red,1:res(2),1:res(3))-&
P_fourier(1:res1_red,1:res(2),1:res(3),row,column))/&
scalarField_fourier(1:res1_red,1:res(2),1:res(3)))), &
maxval(aimag((scalarField_fourier(1:res1_red,1:res(2),1:res(3))-&
P_fourier(1:res1_red,1:res(2),1:res(3),row,column))/&
scalarField_fourier(1:res1_red,1:res(2),1:res(3))))
endif
!--------------------------------------------------------------------------------------------------
! removing highest frequencies
P_fourier ( res1_red,1:res(2) , 1:res(3) ,1:3,1:3)&
= cmplx(0.0_pReal,0.0_pReal,pReal)
P_fourier (1:res1_red, res(2)/2_pInt+1_pInt,1:res(3) ,1:3,1:3)&
= cmplx(0.0_pReal,0.0_pReal,pReal)
if(res(3)>1_pInt) &
P_fourier (1:res1_red,1:res(2), res(3)/2_pInt+1_pInt,1:3,1:3)&
= cmplx(0.0_pReal,0.0_pReal,pReal)
!--------------------------------------------------------------------------------------------------
! stress BC handling
if(size_reduced > 0_pInt) then ! calculate stress BC if applied
err_stress = maxval(abs(mask_stress * (P_av - bc(loadcase)%stress))) ! maximum deviaton (tensor norm not applicable)
err_stress_tol = min(maxval(abs(P_av)) * err_stress_tolrel,err_stress_tolabs) ! don't use any tensor norm for the relative criterion because the comparison should be coherent
write(6,'(a)') ''
write(6,'(a)') '... correcting deformation gradient to fulfill BCs ...............'
write(6,'(a,f6.2,a,es11.4,a)') 'error stress = ', err_stress/err_stress_tol, &
' (',err_stress,' Pa)'
F_aim = F_aim - math_mul3333xx33(S_lastInc, ((P_av - bc(loadcase)%stress))) ! residual on given stress components
write(6,'(a,1x,es11.4)')'determinant of new deformation = ',math_det33(F_aim)
else
err_stress_tol = +huge(1.0_pReal)
endif
F_aim_lab = math_rotate_backward33(F_aim,bc(loadcase)%rotation) ! boundary conditions from load frame into lab (Fourier) frame
!--------------------------------------------------------------------------------------------------
! actual spectral method
write(6,'(a)') ''
write(6,'(a)') '... calculating equilibrium with spectral method .................'
!--------------------------------------------------------------------------------------------------
! calculating RMS divergence criterion in Fourier space
pstress_av_L2 = sqrt(maxval(math_eigenvalues33(math_mul33x33(P_av_lab,& ! L_2 norm of average stress (http://mathworld.wolfram.com/SpectralNorm.html)
math_transpose33(P_av_lab)))))
err_div_RMS = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2)
do i = 2_pInt, res1_red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice.
err_div_RMS = err_div_RMS &
+ 2.0_pReal*(sum (real(math_mul33x3_complex(P_fourier(i,j,k,1:3,1:3),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)& ! --> sum squared L_2 norm of vector
+sum(aimag(math_mul33x3_complex(P_fourier(i,j,k,1:3,1:3),&
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal))
enddo
err_div_RMS = err_div_RMS & ! Those two layers (DC and Nyquist) do not have a conjugate complex counterpart
+ sum( real(math_mul33x3_complex(P_fourier(1 ,j,k,1:3,1:3),&
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
+ sum(aimag(math_mul33x3_complex(P_fourier(1 ,j,k,1:3,1:3),&
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
+ sum( real(math_mul33x3_complex(P_fourier(res1_red,j,k,1:3,1:3),&
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)&
+ sum(aimag(math_mul33x3_complex(P_fourier(res1_red,j,k,1:3,1:3),&
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)
enddo; enddo
err_div_RMS = sqrt(err_div_RMS)*wgt ! RMS in real space calculated with Parsevals theorem from Fourier space
if (err_div_RMS/pstress_av_L2 > err_div &
.and. err_stress < err_stress_tol &
.and. iter >= itmin ) then
write(6,'(a)') 'Increasing divergence, stopping iterations'
iter = itmax
endif
err_div = err_div_RMS/pstress_av_L2 ! criterion to stop iterations
!--------------------------------------------------------------------------------------------------
! calculate additional divergence criteria and report
if (debugDivergence) then ! calculate divergence again
err_div_max = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
temp3_Complex = math_mul33x3_complex(P_fourier(i,j,k,1:3,1:3)*wgt,& ! weighting P_fourier
xi(1:3,i,j,k))*TWOPIIMG
err_div_max = max(err_div_max,sum(abs(temp3_Complex)**2.0_pReal))
divergence_fourier(i,j,k,1:3) = temp3_Complex ! need divergence NOT squared
enddo; enddo; enddo
call fftw_execute_dft_c2r(plan_divergence,divergence_fourier,divergence_real) ! already weighted
err_real_div_RMS = 0.0_pReal
err_post_div_RMS = 0.0_pReal
err_real_div_max = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
err_real_div_RMS = err_real_div_RMS + sum(divergence_real(i,j,k,1:3)**2.0_pReal) ! avg of squared L_2 norm of div(stress) in real space
err_post_div_RMS = err_post_div_RMS + sum(divergence_post(i,j,k,1:3)**2.0_pReal) ! avg of squared L_2 norm of div(stress) in real space
err_real_div_max = max(err_real_div_max,sum(divergence_real(i,j,k,1:3)**2.0_pReal)) ! max of squared L_2 norm of div(stress) in real space
enddo; enddo; enddo
err_real_div_RMS = sqrt(wgt*err_real_div_RMS) ! RMS in real space
err_post_div_RMS = sqrt(wgt*err_post_div_RMS) ! RMS in real space
err_real_div_max = sqrt( err_real_div_max) ! max in real space
err_div_max = sqrt( err_div_max) ! max in Fourier space
write(6,'(a,es11.4)') 'error divergence FT RMS = ',err_div_RMS
write(6,'(a,es11.4)') 'error divergence Real RMS = ',err_real_div_RMS
write(6,'(a,es11.4)') 'error divergence post RMS = ',err_post_div_RMS
write(6,'(a,es11.4)') 'error divergence FT max = ',err_div_max
write(6,'(a,es11.4)') 'error divergence Real max = ',err_real_div_max
endif
write(6,'(a,f6.2,a,es11.4,a)') 'error divergence = ', err_div/err_div_tol,&
' (',err_div,' N/m³)'
!--------------------------------------------------------------------------------------------------
! to the actual spectral method calculation (mechanical equilibrium)
if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat
do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res1_red
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
xiDyad(l,m) = xi(l, i,j,k)*xi(m, i,j,k)
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
temp33_Real(l,m) = sum(C_ref(l,m,1:3,1:3)*xiDyad)
temp33_Real = math_inv33(temp33_Real)
forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, p=1_pInt:3_pInt)&
gamma_hat(1,1,1, l,m,n,p) = temp33_Real(l,n)*xiDyad(m,p)
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
temp33_Complex(l,m) = sum(gamma_hat(1,1,1, l,m, 1:3,1:3) *&
P_fourier(i,j,k,1:3,1:3))
deltaF_fourier(i,j,k,1:3,1:3) = temp33_Complex
endif
enddo; enddo; enddo
else ! use precalculated gamma-operator
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt,res1_red
forall( m = 1_pInt:3_pInt, n = 1_pInt:3_pInt) &
temp33_Complex(m,n) = sum(gamma_hat(i,j,k, m,n, 1:3,1:3) *&
P_fourier(i,j,k,1:3,1:3))
deltaF_fourier(i,j,k, 1:3,1:3) = temp33_Complex
enddo; enddo; enddo
endif
deltaF_fourier(1,1,1,1:3,1:3) = cmplx((F_aim_lab_lastIter - F_aim_lab) & ! assign (negative) average deformation gradient change to zero frequency (real part)
* real(Npoints,pReal),0.0_pReal,pReal) ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
!--------------------------------------------------------------------------------------------------
! comparing 1 and 3x3 inverse FT results
if (debugFFTW) then
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
scalarField_fourier(i,j,k) = deltaF_fourier(i,j,k,row,column)
enddo; enddo; enddo
do i = 0_pInt, res(1)/2_pInt-2_pInt ! unpack fft data for conj complex symmetric part
m = 1_pInt
do k = 1_pInt, res(3)
n = 1_pInt
do j = 1_pInt, res(2)
scalarField_fourier(res(1)-i,j,k) = conjg(scalarField_fourier(2+i,n,m))
if(n == 1_pInt) n = res(2) + 1_pInt
n = n-1_pInt
enddo
if(m == 1_pInt) m = res(3) + 1_pInt
m = m -1_pInt
enddo; enddo
endif
!--------------------------------------------------------------------------------------------------
! doing the inverse FT
call fftw_execute_dft_c2r(plan_correction,deltaF_fourier,deltaF_real) ! back transform of fluct deformation gradient
!--------------------------------------------------------------------------------------------------
! comparing 1 and 3x3 inverse FT results
if (debugFFTW) then
write(6,'(a,i1,1x,i1)') 'checking iFT results of compontent ', row, column
call fftw_execute_dft(plan_scalarField_back,scalarField_fourier,scalarField_real)
write(6,'(a,es11.4)') 'max iFT relative error = ',&
maxval((real(scalarField_real(1:res(1),1:res(2),1:res(3)))-&
deltaF_real(1:res(1),1:res(2),1:res(3),row,column))/&
real(scalarField_real(1:res(1),1:res(2),1:res(3))))
endif
!--------------------------------------------------------------------------------------------------
! calculate some additional output
if(debugGeneral) then
maxCorrectionSkew = 0.0_pReal
maxCorrectionSym = 0.0_pReal
temp33_Real = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
maxCorrectionSym = max(maxCorrectionSym,&
maxval(math_symmetric33(deltaF_real(i,j,k,1:3,1:3))))
maxCorrectionSkew = max(maxCorrectionSkew,&
maxval(math_skew33(deltaF_real(i,j,k,1:3,1:3))))
temp33_Real = temp33_Real + deltaF_real(i,j,k,1:3,1:3)
enddo; enddo; enddo
write(6,'(a,1x,es11.4)') 'max symmetric correction of deformation =',&
maxCorrectionSym*wgt
write(6,'(a,1x,es11.4)') 'max skew correction of deformation =',&
maxCorrectionSkew*wgt
write(6,'(a,1x,es11.4)') 'max sym/skew of avg correction = ',&
maxval(math_symmetric33(temp33_real))/&
maxval(math_skew33(temp33_real))
endif
!--------------------------------------------------------------------------------------------------
! updated deformation gradient
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) - deltaF_real(i,j,k,1:3,1:3)*wgt ! F(x)^(n+1) = F(x)^(n) + correction; *wgt: correcting for missing normalization
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! calculate bounds of det(F) and report
if(debugGeneral) then
defgradDetMax = -huge(1.0_pReal)
defgradDetMin = +huge(1.0_pReal)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
defgradDet = math_det33(F(i,j,k,1:3,1:3))
defgradDetMax = max(defgradDetMax,defgradDet)
defgradDetMin = min(defgradDetMin,defgradDet)
enddo; enddo; enddo
write(6,'(a,1x,es11.4)') 'max determinant of deformation =', defgradDetMax
write(6,'(a,1x,es11.4)') 'min determinant of deformation =', defgradDetMin
endif
enddo ! end looping when convergency is achieved
CPFEM_mode = 1_pInt ! winding forward
C = C * wgt
write(6,'(a)') ''
write(6,'(a)') '=================================================================='
if(err_div > err_div_tol .or. err_stress > err_stress_tol) then
write(6,'(A,I5.5,A)') 'increment ', totalIncsCounter, ' NOT converged'
notConvergedCounter = notConvergedCounter + 1_pInt
else
convergedCounter = convergedCounter + 1_pInt
write(6,'(A,I5.5,A)') 'increment ', totalIncsCounter, ' converged'
endif
if (mod(inc,bc(loadcase)%outputFrequency) == 0_pInt) then ! at output frequency
write(6,'(a)') ''
write(6,'(a)') '... writing results to file ......................................'
write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! write result to file
flush(538)
endif
if( bc(loadcase)%restartFrequency > 0_pInt .and. &
mod(inc,bc(loadcase)%restartFrequency) == 0_pInt) then ! at frequency of writing restart information set restart parameter for FEsolving (first call to CPFEM_general will write ToDo: true?)
restartInc=totalIncsCounter
restartWrite = .true.
write(6,'(a)') 'writing converged results for restart'
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(F)) ! writing deformation gradient field to file
write (777,rec=1) F
close (777)
call IO_write_jobBinaryFile(777,'C',size(C))
write (777,rec=1) C
close(777)
endif
endif ! end calculation/forwarding
enddo ! end looping over incs in current loadcase

View File

@ -35,7 +35,7 @@
! MPI fuer Eisenforschung, Duesseldorf ! MPI fuer Eisenforschung, Duesseldorf
program DAMASK_spectralDriver program DAMASK_spectral_Driver
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use DAMASK_interface, only: & use DAMASK_interface, only: &
@ -84,11 +84,13 @@ program DAMASK_spectralDriver
materialpoint_sizeResults, & materialpoint_sizeResults, &
materialpoint_results materialpoint_results
use DAMASK_spectralSolver use DAMASK_spectral_SolverAL
use DAMASK_spectral_SolverBasic
use DAMASK_spectral_Utilities
implicit none implicit none
type bc_type type loadcase
real(pReal), dimension (3,3) :: deformation = 0.0_pReal, & ! applied velocity gradient or time derivative of deformation gradient real(pReal), dimension (3,3) :: deformation = 0.0_pReal, & ! applied velocity gradient or time derivative of deformation gradient
stress = 0.0_pReal, & ! stress BC (if applicable) stress = 0.0_pReal, & ! stress BC (if applicable)
rotation = math_I3 ! rotation of BC (if applicable) rotation = math_I3 ! rotation of BC (if applicable)
@ -127,8 +129,8 @@ program DAMASK_spectralDriver
character(len=1024) :: & character(len=1024) :: &
line line
type(bc_type), allocatable, dimension(:) :: bc type(loadcase), allocatable, dimension(:) :: bc
type(solution_t) solres type(solutionState) solres
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
@ -136,13 +138,14 @@ program DAMASK_spectralDriver
real(pReal) :: time = 0.0_pReal, time0 = 0.0_pReal, timeinc = 1.0_pReal, timeinc_old = 0.0_pReal ! elapsed time, begin of interval, time interval real(pReal) :: time = 0.0_pReal, time0 = 0.0_pReal, timeinc = 1.0_pReal, timeinc_old = 0.0_pReal ! elapsed time, begin of interval, time interval
real(pReal) :: guessmode real(pReal) :: guessmode
real(pReal), dimension(3,3) :: temp33_Real real(pReal), dimension(3,3) :: temp33_Real
integer(pInt) :: i, j, k, q, errorID integer(pInt) :: i, j, k, l, errorID
integer(pInt) :: N_Loadcases, loadcase = 0_pInt, inc, & integer(pInt) :: currentLoadcase = 0_pInt, inc, &
totalIncsCounter = 0_pInt,& totalIncsCounter = 0_pInt,&
notConvergedCounter = 0_pInt, convergedCounter = 0_pInt notConvergedCounter = 0_pInt, convergedCounter = 0_pInt
character(len=6) :: loadcase_string character(len=6) :: loadcase_string
call DAMASK_interface_init call DAMASK_interface_init
write(6,'(a)') '' write(6,'(a)') ''
write(6,'(a)') ' <<<+- DAMASK_spectral init -+>>>' write(6,'(a)') ' <<<+- DAMASK_spectral init -+>>>'
write(6,'(a)') ' $Id$' write(6,'(a)') ' $Id$'
@ -173,24 +176,22 @@ program DAMASK_spectralDriver
enddo ! count all identifiers to allocate memory and do sanity check enddo ! count all identifiers to allocate memory and do sanity check
enddo enddo
100 N_Loadcases = N_n 100 if ((N_l + N_Fdot /= N_n) .or. (N_n /= N_t)) & ! sanity check
if ((N_l + N_Fdot /= N_n) .or. (N_n /= N_t)) & ! sanity check
call IO_error(error_ID=837_pInt,ext_msg = trim(loadCaseFile)) ! error message for incomplete loadcase call IO_error(error_ID=837_pInt,ext_msg = trim(loadCaseFile)) ! error message for incomplete loadcase
allocate (bc(N_Loadcases)) allocate (bc(N_n))
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! reading the load case and assign values to the allocated data structure ! reading the load case and assign values to the allocated data structure
rewind(myUnit) rewind(myUnit)
do do
read(myUnit,'(a1024)',END = 101) line read(myUnit,'(a1024)',END = 101) line
if (IO_isBlank(line)) cycle ! skip empty lines if (IO_isBlank(line)) cycle ! skip empty lines
loadcase = loadcase + 1_pInt currentLoadcase = currentLoadcase + 1_pInt
positions = IO_stringPos(line,maxNchunksLoadcase) positions = IO_stringPos(line,maxNchunksLoadcase)
do i = 1_pInt,maxNchunksLoadcase do i = 1_pInt,maxNchunksLoadcase
select case (IO_lc(IO_stringValue(line,positions,i))) select case (IO_lc(IO_stringValue(line,positions,i)))
case('fdot','dotf','l','velocitygrad','velgrad','velocitygradient') ! assign values for the deformation BC matrix case('fdot','dotf','l','velocitygrad','velgrad','velocitygradient') ! assign values for the deformation BC matrix
bc(loadcase)%velGradApplied = & bc(currentLoadcase)%velGradApplied = &
(IO_lc(IO_stringValue(line,positions,i)) == 'l'.or. & ! in case of given L, set flag to true (IO_lc(IO_stringValue(line,positions,i)) == 'l'.or. & ! in case of given L, set flag to true
IO_lc(IO_stringValue(line,positions,i)) == 'velocitygrad'.or.& IO_lc(IO_stringValue(line,positions,i)) == 'velocitygrad'.or.&
IO_lc(IO_stringValue(line,positions,i)) == 'velgrad'.or.& IO_lc(IO_stringValue(line,positions,i)) == 'velgrad'.or.&
@ -201,54 +202,54 @@ program DAMASK_spectralDriver
do j = 1_pInt,9_pInt do j = 1_pInt,9_pInt
if (temp_maskVector(j)) temp_valueVector(j) = IO_floatValue(line,positions,i+j) if (temp_maskVector(j)) temp_valueVector(j) = IO_floatValue(line,positions,i+j)
enddo enddo
bc(loadcase)%maskDeformation = transpose(reshape(temp_maskVector,[ 3,3])) bc(currentLoadcase)%maskDeformation = transpose(reshape(temp_maskVector,[ 3,3]))
bc(loadcase)%deformation = math_plain9to33(temp_valueVector) bc(currentLoadcase)%deformation = math_plain9to33(temp_valueVector)
case('p','pk1','piolakirchhoff','stress') case('p','pk1','piolakirchhoff','stress')
temp_valueVector = 0.0_pReal temp_valueVector = 0.0_pReal
forall (j = 1_pInt:9_pInt) bc(loadcase)%maskStressVector(j) =& forall (j = 1_pInt:9_pInt) bc(currentLoadcase)%maskStressVector(j) =&
IO_stringValue(line,positions,i+j) /= '*' IO_stringValue(line,positions,i+j) /= '*'
do j = 1_pInt,9_pInt do j = 1_pInt,9_pInt
if (bc(loadcase)%maskStressVector(j)) temp_valueVector(j) =& if (bc(currentLoadcase)%maskStressVector(j)) temp_valueVector(j) =&
IO_floatValue(line,positions,i+j) ! assign values for the bc(loadcase)%stress matrix IO_floatValue(line,positions,i+j) ! assign values for the bc(currentLoadcase)%stress matrix
enddo enddo
bc(loadcase)%maskStress = transpose(reshape(bc(loadcase)%maskStressVector,[ 3,3])) bc(currentLoadcase)%maskStress = transpose(reshape(bc(currentLoadcase)%maskStressVector,[ 3,3]))
bc(loadcase)%stress = math_plain9to33(temp_valueVector) bc(currentLoadcase)%stress = math_plain9to33(temp_valueVector)
case('t','time','delta') ! increment time case('t','time','delta') ! increment time
bc(loadcase)%time = IO_floatValue(line,positions,i+1_pInt) bc(currentLoadcase)%time = IO_floatValue(line,positions,i+1_pInt)
case('temp','temperature') ! starting temperature case('temp','temperature') ! starting temperature
bc(loadcase)%temperature = IO_floatValue(line,positions,i+1_pInt) bc(currentLoadcase)%temperature = IO_floatValue(line,positions,i+1_pInt)
case('n','incs','increments','steps') ! number of increments case('n','incs','increments','steps') ! number of increments
bc(loadcase)%incs = IO_intValue(line,positions,i+1_pInt) bc(currentLoadcase)%incs = IO_intValue(line,positions,i+1_pInt)
case('logincs','logincrements','logsteps') ! number of increments (switch to log time scaling) case('logincs','logincrements','logsteps') ! number of increments (switch to log time scaling)
bc(loadcase)%incs = IO_intValue(line,positions,i+1_pInt) bc(currentLoadcase)%incs = IO_intValue(line,positions,i+1_pInt)
bc(loadcase)%logscale = 1_pInt bc(currentLoadcase)%logscale = 1_pInt
case('f','freq','frequency','outputfreq') ! frequency of result writings case('f','freq','frequency','outputfreq') ! frequency of result writings
bc(loadcase)%outputfrequency = IO_intValue(line,positions,i+1_pInt) bc(currentLoadcase)%outputfrequency = IO_intValue(line,positions,i+1_pInt)
case('r','restart','restartwrite') ! frequency of writing restart information case('r','restart','restartwrite') ! frequency of writing restart information
bc(loadcase)%restartfrequency = max(0_pInt,IO_intValue(line,positions,i+1_pInt)) bc(currentLoadcase)%restartfrequency = max(0_pInt,IO_intValue(line,positions,i+1_pInt))
case('guessreset','dropguessing') case('guessreset','dropguessing')
bc(loadcase)%followFormerTrajectory = .false. ! do not continue to predict deformation along former trajectory bc(currentLoadcase)%followFormerTrajectory = .false. ! do not continue to predict deformation along former trajectory
case('euler') ! rotation of loadcase given in euler angles case('euler') ! rotation of currentLoadcase given in euler angles
q = 0_pInt ! assuming values given in radians l = 0_pInt ! assuming values given in radians
k = 1_pInt ! assuming keyword indicating degree/radians k = 1_pInt ! assuming keyword indicating degree/radians
select case (IO_lc(IO_stringValue(line,positions,i+1_pInt))) select case (IO_lc(IO_stringValue(line,positions,i+1_pInt)))
case('deg','degree') case('deg','degree')
q = 1_pInt ! for conversion from degree to radian l = 1_pInt ! for conversion from degree to radian
case('rad','radian') case('rad','radian')
case default case default
k = 0_pInt ! immediately reading in angles, assuming radians k = 0_pInt ! immediately reading in angles, assuming radians
end select end select
forall(j = 1_pInt:3_pInt) temp33_Real(j,1) = & forall(j = 1_pInt:3_pInt) temp33_Real(j,1) = &
IO_floatValue(line,positions,i+k+j) * real(q,pReal) * inRad IO_floatValue(line,positions,i+k+j) * real(l,pReal) * inRad
bc(loadcase)%rotation = math_EulerToR(temp33_Real(:,1)) bc(currentLoadcase)%rotation = math_EulerToR(temp33_Real(:,1))
case('rotation','rot') ! assign values for the rotation of loadcase matrix case('rotation','rot') ! assign values for the rotation of currentLoadcase matrix
temp_valueVector = 0.0_pReal temp_valueVector = 0.0_pReal
forall (j = 1_pInt:9_pInt) temp_valueVector(j) = IO_floatValue(line,positions,i+j) forall (j = 1_pInt:9_pInt) temp_valueVector(j) = IO_floatValue(line,positions,i+j)
bc(loadcase)%rotation = math_plain9to33(temp_valueVector) bc(currentLoadcase)%rotation = math_plain9to33(temp_valueVector)
end select end select
enddo; enddo enddo; enddo
101 close(myUnit) 101 close(myUnit)
print*, 'my Unit closed'
!-------------------------------------------------------------------------------------------------- ToDo: if temperature at CPFEM is treated properly, move this up immediately after interface init !-------------------------------------------------------------------------------------------------- ToDo: if temperature at CPFEM is treated properly, move this up immediately after interface init
! initialization of all related DAMASK modules (e.g. mesh.f90 reads in geometry) ! initialization of all related DAMASK modules (e.g. mesh.f90 reads in geometry)
call CPFEM_initAll(bc(1)%temperature,1_pInt,1_pInt) call CPFEM_initAll(bc(1)%temperature,1_pInt,1_pInt)
@ -267,55 +268,55 @@ program DAMASK_spectralDriver
write(6,'(a,3(f12.5))') 'dimension x y z:', mesh_spectral_getDimension() write(6,'(a,3(f12.5))') 'dimension x y z:', mesh_spectral_getDimension()
write(6,'(a,i5)') 'homogenization: ', mesh_spectral_getHomogenization() write(6,'(a,i5)') 'homogenization: ', mesh_spectral_getHomogenization()
write(6,'(a)') '#############################################################' write(6,'(a)') '#############################################################'
write(6,'(a)') 'loadcase file: ',trim(loadCaseFile) write(6,'(a)') 'currentLoadcase file: ',trim(loadCaseFile)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! consistency checks and output of load case ! consistency checks and output of load case
bc(1)%followFormerTrajectory = .false. ! cannot guess along trajectory for first inc of first loadcase bc(1)%followFormerTrajectory = .false. ! cannot guess along trajectory for first inc of first currentLoadcase
errorID = 0_pInt errorID = 0_pInt
do loadcase = 1_pInt, N_Loadcases checkLoadcases: do currentLoadcase = 1_pInt, size(bc)
write (loadcase_string, '(i6)' ) loadcase write (loadcase_string, '(i6)' ) currentLoadcase
write(6,'(a)') '=============================================================' write(6,'(a)') '============================================================='
write(6,'(a,i6)') 'loadcase: ', loadcase write(6,'(a,i6)') 'currentLoadcase: ', currentLoadcase
if (.not. bc(loadcase)%followFormerTrajectory) write(6,'(a)') 'drop guessing along trajectory' if (.not. bc(currentLoadcase)%followFormerTrajectory) write(6,'(a)') 'drop guessing along trajectory'
if (bc(loadcase)%velGradApplied) then if (bc(currentLoadcase)%velGradApplied) then
do j = 1_pInt, 3_pInt do j = 1_pInt, 3_pInt
if (any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .true.) .and. & if (any(bc(currentLoadcase)%maskDeformation(j,1:3) .eqv. .true.) .and. &
any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .false.)) errorID = 832_pInt ! each row should be either fully or not at all defined any(bc(currentLoadcase)%maskDeformation(j,1:3) .eqv. .false.)) errorID = 832_pInt ! each row should be either fully or not at all defined
enddo enddo
write(6,'(a)')'velocity gradient:' write(6,'(a)')'velocity gradient:'
else else
write(6,'(a)')'deformation gradient rate:' write(6,'(a)')'deformation gradient rate:'
endif endif
write (6,'(3(3(f12.7,1x)/))',advance='no') merge(math_transpose33(bc(loadcase)%deformation),& write (6,'(3(3(f12.7,1x)/))',advance='no') merge(math_transpose33(bc(currentLoadcase)%deformation),&
reshape(spread(DAMASK_NaN,1,9),[ 3,3]),transpose(bc(loadcase)%maskDeformation)) reshape(spread(DAMASK_NaN,1,9),[ 3,3]),transpose(bc(currentLoadcase)%maskDeformation))
write (6,'(a,/,3(3(f12.7,1x)/))',advance='no') ' stress / GPa:',& write (6,'(a,/,3(3(f12.7,1x)/))',advance='no') ' stress / GPa:',&
1e-9_pReal*merge(math_transpose33(bc(loadcase)%stress),& 1e-9_pReal*merge(math_transpose33(bc(currentLoadcase)%stress),&
reshape(spread(DAMASK_NaN,1,9),[ 3,3]),transpose(bc(loadcase)%maskStress)) reshape(spread(DAMASK_NaN,1,9),[ 3,3]),transpose(bc(currentLoadcase)%maskStress))
if (any(bc(loadcase)%rotation /= math_I3)) & if (any(bc(currentLoadcase)%rotation /= math_I3)) &
write (6,'(a,/,3(3(f12.7,1x)/))',advance='no') ' rotation of loadframe:',& write (6,'(a,/,3(3(f12.7,1x)/))',advance='no') ' rotation of loadframe:',&
math_transpose33(bc(loadcase)%rotation) math_transpose33(bc(currentLoadcase)%rotation)
write(6,'(a,f12.6)') 'temperature:', bc(loadcase)%temperature write(6,'(a,f12.6)') 'temperature:', bc(currentLoadcase)%temperature
write(6,'(a,f12.6)') 'time: ', bc(loadcase)%time write(6,'(a,f12.6)') 'time: ', bc(currentLoadcase)%time
write(6,'(a,i5)') 'increments: ', bc(loadcase)%incs write(6,'(a,i5)') 'increments: ', bc(currentLoadcase)%incs
write(6,'(a,i5)') 'output frequency: ', bc(loadcase)%outputfrequency write(6,'(a,i5)') 'output frequency: ', bc(currentLoadcase)%outputfrequency
write(6,'(a,i5)') 'restart frequency: ', bc(loadcase)%restartfrequency write(6,'(a,i5)') 'restart frequency: ', bc(currentLoadcase)%restartfrequency
if (any(bc(loadcase)%maskStress .eqv. bc(loadcase)%maskDeformation)) errorID = 831_pInt ! exclusive or masking only if (any(bc(currentLoadcase)%maskStress .eqv. bc(currentLoadcase)%maskDeformation)) errorID = 831_pInt ! exclusive or masking only
if (any(bc(loadcase)%maskStress .and. transpose(bc(loadcase)%maskStress) .and. & if (any(bc(currentLoadcase)%maskStress .and. transpose(bc(currentLoadcase)%maskStress) .and. &
reshape([ .false.,.true.,.true.,.true.,.false.,.true.,.true.,.true.,.false.],[ 3,3]))) & reshape([ .false.,.true.,.true.,.true.,.false.,.true.,.true.,.true.,.false.],[ 3,3]))) &
errorID = 838_pInt ! no rotation is allowed by stress BC errorID = 838_pInt ! no rotation is allowed by stress BC
if (any(abs(math_mul33x33(bc(loadcase)%rotation,math_transpose33(bc(loadcase)%rotation))& if (any(abs(math_mul33x33(bc(currentLoadcase)%rotation,math_transpose33(bc(currentLoadcase)%rotation))&
-math_I3) > reshape(spread(rotation_tol,1,9),[ 3,3]))& -math_I3) > reshape(spread(rotation_tol,1,9),[ 3,3]))&
.or. abs(math_det33(bc(loadcase)%rotation)) > 1.0_pReal + rotation_tol)& .or. abs(math_det33(bc(currentLoadcase)%rotation)) > 1.0_pReal + rotation_tol)&
errorID = 846_pInt ! given rotation matrix contains strain errorID = 846_pInt ! given rotation matrix contains strain
if (bc(loadcase)%time < 0.0_pReal) errorID = 834_pInt ! negative time increment if (bc(currentLoadcase)%time < 0.0_pReal) errorID = 834_pInt ! negative time increment
if (bc(loadcase)%incs < 1_pInt) errorID = 835_pInt ! non-positive incs count if (bc(currentLoadcase)%incs < 1_pInt) errorID = 835_pInt ! non-positive incs count
if (bc(loadcase)%outputfrequency < 1_pInt) errorID = 836_pInt ! non-positive result frequency if (bc(currentLoadcase)%outputfrequency < 1_pInt) errorID = 836_pInt ! non-positive result frequency
if (errorID > 0_pInt) call IO_error(error_ID = errorID, ext_msg = loadcase_string) if (errorID > 0_pInt) call IO_error(error_ID = errorID, ext_msg = loadcase_string)
enddo enddo checkLoadcases
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! write header of output file ! write header of output file
@ -331,53 +332,53 @@ program DAMASK_spectralDriver
write(538) 'resolution', mesh_spectral_getResolution() write(538) 'resolution', mesh_spectral_getResolution()
write(538) 'dimension', mesh_spectral_getDimension() write(538) 'dimension', mesh_spectral_getDimension()
write(538) 'materialpoint_sizeResults', materialpoint_sizeResults write(538) 'materialpoint_sizeResults', materialpoint_sizeResults
write(538) 'loadcases', N_Loadcases write(538) 'loadcases', size(bc)
write(538) 'frequencies', bc(1:N_Loadcases)%outputfrequency ! one entry per loadcase write(538) 'frequencies', bc%outputfrequency ! one entry per currentLoadcase
write(538) 'times', bc(1:N_Loadcases)%time ! one entry per loadcase write(538) 'times', bc%time ! one entry per currentLoadcase
write(538) 'logscales', bc(1:N_Loadcases)%logscale write(538) 'logscales', bc%logscale
write(538) 'increments', bc(1:N_Loadcases)%incs ! one entry per loadcase write(538) 'increments', bc%incs ! one entry per currentLoadcase
write(538) 'startingIncrement', restartInc - 1_pInt ! start with writing out the previous inc write(538) 'startingIncrement', restartInc - 1_pInt ! start with writing out the previous inc
write(538) 'eoh' ! end of header write(538) 'eoh' ! end of header
write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! initial (non-deformed or read-in) results write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! initial (non-deformed or read-in) results
if (debugGeneral) write(6,'(a)') 'Header of result file written out' if (debugGeneral) write(6,'(a)') 'Header of result file written out'
endif endif
call Solver_Init() call Basic_init()
!################################################################################################## !##################################################################################################
! Loop over loadcases defined in the loadcase file ! Loop over loadcases defined in the currentLoadcase file
!################################################################################################## !##################################################################################################
do loadcase = 1_pInt, N_Loadcases loadCaseLooping: do currentLoadcase = 1_pInt, size(bc)
time0 = time ! loadcase start time time0 = time ! currentLoadcase start time
if (bc(loadcase)%followFormerTrajectory) then if (bc(currentLoadcase)%followFormerTrajectory) then
guessmode = 1.0_pReal guessmode = 1.0_pReal
else else
guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first inc guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first inc
endif endif
!################################################################################################## !##################################################################################################
! loop oper incs defined in input file for current loadcase ! loop oper incs defined in input file for current currentLoadcase
!################################################################################################## !##################################################################################################
do inc = 1_pInt, bc(loadcase)%incs incLooping: do inc = 1_pInt, bc(currentLoadcase)%incs
totalIncsCounter = totalIncsCounter + 1_pInt totalIncsCounter = totalIncsCounter + 1_pInt
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! forwarding time ! forwarding time
timeinc_old = timeinc timeinc_old = timeinc
if (bc(loadcase)%logscale == 0_pInt) then ! linear scale if (bc(currentLoadcase)%logscale == 0_pInt) then ! linear scale
timeinc = bc(loadcase)%time/bc(loadcase)%incs ! only valid for given linear time scale. will be overwritten later in case loglinear scale is used timeinc = bc(currentLoadcase)%time/bc(currentLoadcase)%incs ! only valid for given linear time scale. will be overwritten later in case loglinear scale is used
else else
if (loadcase == 1_pInt) then ! 1st loadcase of logarithmic scale if (currentLoadcase == 1_pInt) then ! 1st currentLoadcase of logarithmic scale
if (inc == 1_pInt) then ! 1st inc of 1st loadcase of logarithmic scale if (inc == 1_pInt) then ! 1st inc of 1st currentLoadcase of logarithmic scale
timeinc = bc(1)%time*(2.0_pReal**real( 1_pInt-bc(1)%incs ,pReal)) ! assume 1st inc is equal to 2nd timeinc = bc(1)%time*(2.0_pReal**real( 1_pInt-bc(1)%incs ,pReal)) ! assume 1st inc is equal to 2nd
else ! not-1st inc of 1st loadcase of logarithmic scale else ! not-1st inc of 1st currentLoadcase of logarithmic scale
timeinc = bc(1)%time*(2.0_pReal**real(inc-1_pInt-bc(1)%incs ,pReal)) timeinc = bc(1)%time*(2.0_pReal**real(inc-1_pInt-bc(1)%incs ,pReal))
endif endif
else ! not-1st loadcase of logarithmic scale else ! not-1st currentLoadcase of logarithmic scale
timeinc = time0 *( (1.0_pReal + bc(loadcase)%time/time0 )**(real( inc,pReal)/& timeinc = time0 *( (1.0_pReal + bc(currentLoadcase)%time/time0 )**(real( inc,pReal)/&
real(bc(loadcase)%incs ,pReal))& real(bc(currentLoadcase)%incs ,pReal))&
-(1.0_pReal + bc(loadcase)%time/time0 )**(real( (inc-1_pInt),pReal)/& -(1.0_pReal + bc(currentLoadcase)%time/time0 )**(real( (inc-1_pInt),pReal)/&
real(bc(loadcase)%incs ,pReal)) ) real(bc(currentLoadcase)%incs ,pReal)) )
endif endif
endif endif
time = time + timeinc time = time + timeinc
@ -389,14 +390,14 @@ program DAMASK_spectralDriver
write(6,'(a)') '##################################################################' write(6,'(a)') '##################################################################'
write(6,'(A,I5.5,A,es12.5)') 'Increment ', totalIncsCounter, ' Time ',time write(6,'(A,I5.5,A,es12.5)') 'Increment ', totalIncsCounter, ' Time ',time
solres =solution (& solres =basic_solution (&
guessmode,timeinc,timeinc_old, & guessmode,timeinc,timeinc_old, &
P_BC = bc(loadcase)%stress, & P_BC = bc(currentLoadcase)%stress, &
F_BC = bc(loadcase)%deformation, & F_BC = bc(currentLoadcase)%deformation, &
! temperature_bc = bc(loadcase)%temperature, & ! temperature_bc = bc(currentLoadcase)%temperature, &
mask_stressVector = bc(loadcase)%maskStressVector, & mask_stressVector = bc(currentLoadcase)%maskStressVector, &
velgrad = bc(loadcase)%velGradApplied, & velgrad = bc(currentLoadcase)%velGradApplied, &
rotation_BC = bc(loadcase)%rotation) rotation_BC = bc(currentLoadcase)%rotation)
write(6,'(a)') '' write(6,'(a)') ''
write(6,'(a)') '==================================================================' write(6,'(a)') '=================================================================='
@ -408,17 +409,17 @@ program DAMASK_spectralDriver
notConvergedCounter = notConvergedCounter + 1_pInt notConvergedCounter = notConvergedCounter + 1_pInt
endif endif
if (mod(inc,bc(loadcase)%outputFrequency) == 0_pInt) then ! at output frequency if (mod(inc,bc(currentLoadcase)%outputFrequency) == 0_pInt) then ! at output frequency
write(6,'(a)') '' write(6,'(a)') ''
write(6,'(a)') '... writing results to file ......................................' write(6,'(a)') '... writing results to file ......................................'
write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! write result to file write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! write result to file
endif endif
endif ! end calculation/forwarding endif ! end calculation/forwarding
guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase guessmode = 1.0_pReal ! keep guessing along former trajectory during same currentLoadcase
enddo ! end looping over incs in current loadcase enddo incLooping
enddo ! end looping over loadcases enddo loadCaseLooping
write(6,'(a)') '' write(6,'(a)') ''
write(6,'(a)') '##################################################################' write(6,'(a)') '##################################################################'
write(6,'(i6.6,a,i6.6,a,f5.1,a)') convergedCounter, ' out of ', & write(6,'(i6.6,a,i6.6,a,f5.1,a)') convergedCounter, ' out of ', &
@ -430,7 +431,7 @@ program DAMASK_spectralDriver
if (notConvergedCounter > 0_pInt) call quit(3_pInt) if (notConvergedCounter > 0_pInt) call quit(3_pInt)
call quit(0_pInt) call quit(0_pInt)
end program DAMASK_spectralDriver end program DAMASK_spectral_Driver

View File

@ -0,0 +1,6 @@
module DAMASK_spectral_SolverAL
use DAMASK_spectral_Utilities
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
end module DAMASK_spectral_SolverAL

View File

@ -0,0 +1,161 @@
module DAMASK_spectral_SolverBasic
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use DAMASK_spectral_Utilities
contains
subroutine Basic_Init()
call Utilities_Init()
end subroutine basic_Init
type(solutionState) function basic_solution(guessmode,timeinc,timeinc_old,P_BC,F_BC,mask_stressVector,velgrad,rotation_BC)
use numerics, only: &
itmax,&
itmin
use IO, only: &
IO_write_JobBinaryFile
use FEsolving, only: &
restartWrite
implicit none
!--------------------------------------------------------------------------------------------------
! input data for solution
real(pReal), intent(in) :: timeinc, timeinc_old
real(pReal), intent(in) :: guessmode
logical, intent(in) :: velgrad
real(pReal), dimension(3,3), intent(in) :: P_BC,F_BC,rotation_BC
logical, dimension(9), intent(in) :: mask_stressVector
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
real(pReal), dimension(3,3) :: temp33_Real ! compliance and stiffness in matrix notation
real(pReal), dimension(3,3,3,3) :: S
real(pReal), dimension(3,3) :: &
mask_stress, &
mask_defgrad, &
deltaF_aim, &
F_aim_lab, &
F_aim_lab_lastIter
!--------------------------------------------------------------------------------------------------
! loop variables, convergence etc.
real(pReal) :: err_div, err_stress
integer(pInt) :: iter
integer(pInt) :: i, j, k
logical :: ForwardResults
real(pReal) :: defgradDet
real(pReal) :: defgradDetMax, defgradDetMin
mask_stress = merge(ones,zeroes,reshape(mask_stressVector,[3,3]))
mask_defgrad = merge(zeroes,ones,reshape(mask_stressVector,[3,3]))
if (restartWrite) then
write(6,'(a)') 'writing converged results for restart'
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(F_lastInc)) ! writing deformation gradient field to file
write (777,rec=1) F_LastInc
close (777)
call IO_write_jobBinaryFile(777,'C',size(C))
write (777,rec=1) C
close(777)
endif
ForwardResults = .True.
if (velgrad) then ! calculate deltaF_aim from given L and current F
deltaF_aim = timeinc * mask_defgrad * math_mul33x33(F_BC, F_aim)
else ! deltaF_aim = fDot *timeinc where applicable
deltaF_aim = timeinc * mask_defgrad * F_BC
endif
!--------------------------------------------------------------------------------------------------
! winding forward of deformation aim in loadcase system
temp33_Real = F_aim
F_aim = F_aim &
+ guessmode * mask_stress * (F_aim - F_aim_lastInc)*timeinc/timeinc_old &
+ deltaF_aim
F_aim_lastInc = temp33_Real
F_aim_lab = math_rotate_backward33(F_aim,rotation_BC) ! boundary conditions from load frame into lab (Fourier) frame
!--------------------------------------------------------------------------------------------------
! update local deformation gradient and coordinates
deltaF_aim = math_rotate_backward33(deltaF_aim,rotation_BC)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
temp33_Real = F(i,j,k,1:3,1:3)
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
+ guessmode * (F(i,j,k,1:3,1:3) - F_lastInc(i,j,k,1:3,1:3))*timeinc/timeinc_old& ! guessing...
+ (1.0_pReal-guessmode) * deltaF_aim ! if not guessing, use prescribed average deformation where applicable
F_lastInc(i,j,k,1:3,1:3) = temp33_Real
enddo; enddo; enddo
call deformed_fft(res,geomdim,math_rotate_backward33(F_aim,rotation_BC),& ! calculate current coordinates
1.0_pReal,F_lastInc,coordinates)
iter = 0_pInt
S = S_lastInc(rotation_BC,mask_stressVector)
convergenceLoop: do while((iter < itmax .and. (any([err_div ,err_stress] > 1.0_pReal)))&
.or. iter < itmin)
iter = iter + 1_pInt
!--------------------------------------------------------------------------------------------------
! report begin of new iteration
write(6,'(a)') ''
write(6,'(a)') '=================================================================='
write(6,'(3(a,i6.6))') ' @ Iter. ',itmin,' < ',iter,' < ',itmax
write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'deformation gradient aim =',&
math_transpose33(F_aim)
F_aim_lab_lastIter = math_rotate_backward33(F_aim,rotation_BC)
!--------------------------------------------------------------------------------------------------
! evaluate constitutive response
call constitutiveResponse(ForwardResults,timeInc)
ForwardResults = .False.
!--------------------------------------------------------------------------------------------------
! stress BC handling
if(any(mask_stressVector)) then ! calculate stress BC if applied
err_stress = BCcorrection(mask_stressVector,P_BC,S)
else
err_stress = 0.0_pReal
endif
F_aim_lab = math_rotate_backward33(F_aim,rotation_BC) ! boundary conditions from load frame into lab (Fourier) frame
!--------------------------------------------------------------------------------------------------
! updated deformation gradient
field_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = P
err_div = convolution(.True.,F_aim_lab_lastIter - F_aim_lab)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) - field_real(i,j,k,1:3,1:3) ! F(x)^(n+1) = F(x)^(n) + correction; *wgt: correcting for missing normalization
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! calculate bounds of det(F) and report
if(debugGeneral) then
defgradDetMax = -huge(1.0_pReal)
defgradDetMin = +huge(1.0_pReal)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
defgradDet = math_det33(F(i,j,k,1:3,1:3))
defgradDetMax = max(defgradDetMax,defgradDet)
defgradDetMin = min(defgradDetMin,defgradDet)
enddo; enddo; enddo
write(6,'(a,1x,es11.4)') 'max determinant of deformation =', defgradDetMax
write(6,'(a,1x,es11.4)') 'min determinant of deformation =', defgradDetMin
endif
enddo convergenceLoop
end function basic_solution
end module DAMASK_spectral_SolverBasic

View File

@ -34,40 +34,29 @@
! !
! MPI fuer Eisenforschung, Duesseldorf ! MPI fuer Eisenforschung, Duesseldorf
module DAMASK_spectralSolver module DAMASK_spectral_Utilities
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use prec, only: pReal, pInt use prec, only: &
use math pReal, &
use DAMASK_interface, only: & pInt
DAMASK_interface_init, &
loadCaseFile, & use math
geometryFile, &
getSolverWorkingDirectoryName, & use IO, only: &
getSolverJobName, & IO_error
appendToOutFile
use debug, only: &
debug_level, &
debug_spectral, &
debug_levelBasic, &
debug_spectralRestart, &
debug_spectralFFTW
use IO
use CPFEM, only: &
CPFEM_general
use numerics, only: &
memory_efficient
implicit none implicit none
type solution_t ! mask of stress boundary conditions type solutionState ! mask of stress boundary conditions
logical :: converged = .false. logical :: converged = .false.
logical :: regrid = .false. logical :: regrid = .false.
logical :: term_ill = .false. logical :: term_ill = .false.
end type solution_t end type solutionState
character(len=5) :: solverType, parameter = 'basic' character(len=5) :: solverType, parameter = 'basic'
!--------------------------------------------------------------------------------------------------
real(pReal), dimension(:,:,:,:,:), allocatable :: F, F_lastInc,P ! common pointwise data
real(pReal), dimension(:,:,:,:,:), allocatable :: F, F_lastInc, P
real(pReal), dimension(:,:,:,:), allocatable :: coordinates real(pReal), dimension(:,:,:,:), allocatable :: coordinates
real(pReal), dimension(:,:,:), allocatable :: temperature real(pReal), dimension(:,:,:), allocatable :: temperature
@ -75,7 +64,6 @@ module DAMASK_spectralSolver
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! variables storing information for spectral method and FFTW ! variables storing information for spectral method and FFTW
type(C_PTR) :: plan_forward, plan_backward ! plans for fftw type(C_PTR) :: plan_forward, plan_backward ! plans for fftw
real(pReal), dimension(3,3) :: xiDyad ! product of wave vectors
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat ! gamma operator (field) for spectral method real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat ! gamma operator (field) for spectral method
real(pReal), dimension(:,:,:,:), allocatable :: xi ! wave vector field for divergence and for gamma operator real(pReal), dimension(:,:,:,:), allocatable :: xi ! wave vector field for divergence and for gamma operator
real(pReal), dimension(:,:,:,:,:), pointer :: field_real real(pReal), dimension(:,:,:,:,:), pointer :: field_real
@ -98,21 +86,17 @@ module DAMASK_spectralSolver
!variables controlling debugging !variables controlling debugging
logical :: debugGeneral, debugDivergence, debugRestart, debugFFTW logical :: debugGeneral, debugDivergence, debugRestart, debugFFTW
!--------------------------------------------------------------------------------------------------
! variables storing information for spectral method and FFTW
type(C_PTR) :: plan_stress, plan_correction ! plans for fftw
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! stress, stiffness and compliance average etc. ! stress, stiffness and compliance average etc.
real(pReal), dimension(3,3) :: & real(pReal), dimension(3,3) :: &
F_aim = math_I3, & F_aim = math_I3, &
F_aim_lastInc = math_I3 F_aim_lastInc = math_I3, &
P_av
real(pReal), dimension(3,3,3,3) :: & real(pReal), dimension(3,3,3,3) :: &
C_ref = 0.0_pReal, & C_ref = 0.0_pReal, &
C = 0.0_pReal C = 0.0_pReal
real(pReal), dimension(3) :: geomdim = 0.0_pReal, virt_dim = 0.0_pReal ! physical dimension of volume element per direction real(pReal), dimension(3) :: geomdim = 0.0_pReal, virt_dim = 0.0_pReal ! physical dimension of volume element per direction
integer(pInt), dimension(3) :: res = 1_pInt integer(pInt), dimension(3) :: res = 1_pInt
real(pReal) :: wgt real(pReal) :: wgt
@ -120,7 +104,10 @@ module DAMASK_spectralSolver
contains contains
subroutine Solver_Init() subroutine Utilities_init(F,P,F_...)
use DAMASK_interface, only: &
getSolverJobName
use mesh, only : & use mesh, only : &
mesh_spectral_getResolution, & mesh_spectral_getResolution, &
@ -142,26 +129,26 @@ subroutine Solver_Init()
use FEsolving, only: & use FEsolving, only: &
restartInc restartInc
use numerics, only: &
memory_efficient
use CPFEM, only: &
CPFEM_general
use IO, only: &
IO_read_JobBinaryFile, &
IO_write_JobBinaryFile
implicit none implicit none
!-------------------------------------------------------------------------------------------------- real(pReal), dimension(3,3) :: temp33_Real, xiDyad
! loop variables, convergence etc. integer(pInt) :: i, j, k, l, m, n, q, ierr
integer(pInt), dimension(3) :: k_s
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
real(pReal), dimension(3,3) :: temp33_Real
integer(pInt) :: i, j, k, l, m, n, q, ielem
real(pReal), dimension(3,3,3,3) :: dPdF
type(C_PTR) :: tensorField ! field in real and fourier space type(C_PTR) :: tensorField ! field in real and fourier space
type(C_PTR) :: scalarField_realC, scalarField_fourierC type(C_PTR) :: scalarField_realC, scalarField_fourierC
type(C_PTR) :: divergence type(C_PTR) :: divergence
integer(pInt), dimension(3) :: k_s
real(pReal), dimension(6) :: sigma ! cauchy stress
real(pReal), dimension(6,6) :: dsde
integer(pInt) :: ierr
write(6,'(a)') '' write(6,'(a)') ''
write(6,'(a)') ' <<<+- DAMASK_spectralSolver init -+>>>' write(6,'(a)') ' <<<+- DAMASK_spectralSolver init -+>>>'
@ -247,26 +234,14 @@ subroutine Solver_Init()
if (debugGeneral) write(6,'(a)') 'FFTW initialized' if (debugGeneral) write(6,'(a)') 'FFTW initialized'
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! in case of no restart get reference material stiffness and init fields to no deformation ! init fields
if (restartInc == 1_pInt) then if (restartInc == 1_pInt) then ! no deformation (no restart)
ielem = 0_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
F(i,j,k,1:3,1:3) = math_I3 F(i,j,k,1:3,1:3) = math_I3
F_lastInc(i,j,k,1:3,1:3) = math_I3 F_lastInc(i,j,k,1:3,1:3) = math_I3
coordinates(i,j,k,1:3) = geomdim/real(res,pReal)*real([i,j,k],pReal) - geomdim/real(2_pInt*res,pReal) coordinates(i,j,k,1:3) = geomdim/real(res,pReal)*real([i,j,k],pReal) &
call CPFEM_general(2_pInt,coordinates(i,j,k,1:3),math_I3,math_I3,temperature(i,j,k),& - geomdim/real(2_pInt*res,pReal)
0.0_pReal,ielem,1_pInt,sigma,dsde,P(i,j,k,1:3,1:3),dPdF)
C = C + dPdF
enddo; enddo; enddo enddo; enddo; enddo
C = C * wgt
C_ref = C
call IO_write_jobBinaryFile(777,'C_ref',size(C_ref))
write (777,rec=1) C_ref
close(777)
!--------------------------------------------------------------------------------------------------
! restore deformation gradient and stiffness from saved state
elseif (restartInc > 1_pInt) then ! using old values from file elseif (restartInc > 1_pInt) then ! using old values from file
if (debugRestart) write(6,'(a,i6,a)') 'Reading values of increment ',& if (debugRestart) write(6,'(a,i6,a)') 'Reading values of increment ',&
restartInc - 1_pInt,' from file' restartInc - 1_pInt,' from file'
@ -274,21 +249,20 @@ subroutine Solver_Init()
trim(getSolverJobName()),size(F)) trim(getSolverJobName()),size(F))
read (777,rec=1) F read (777,rec=1) F
close (777) close (777)
F_lastInc = F call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad_lastInc',&
F_aim = 0.0_pReal trim(getSolverJobName()),size(F_lastInc))
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) read (777,rec=1) F_lastInc
F_aim = F_aim + F(i,j,k,1:3,1:3) ! calculating old average deformation close (777)
enddo; enddo; enddo call IO_read_jobBinaryFile(777,'F_aim',trim(getSolverJobName()),size(F_aim))
F_aim = F_aim * wgt read (777,rec=1) F_aim
F_aim_lastInc = F_aim close (777)
call IO_read_jobBinaryFile(777,'F_aim_lastInc',trim(getSolverJobName()),size(F_aim_lastInc))
read (777,rec=1) F_aim_lastInc
close (777)
coordinates = 0.0 ! change it later!!! coordinates = 0.0 ! change it later!!!
call IO_read_jobBinaryFile(777,'C_ref',trim(getSolverJobName()),size(C_ref))
read (777,rec=1) C_ref
close (777)
call IO_read_jobBinaryFile(777,'C',trim(getSolverJobName()),size(C))
read (777,rec=1) C
close (777)
endif endif
call constitutiveResponse(.FALSE.,0.0_pReal)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! calculation of discrete angular frequencies, ordered as in FFTW (wrap around) ! calculation of discrete angular frequencies, ordered as in FFTW (wrap around)
@ -310,12 +284,24 @@ subroutine Solver_Init()
k_s(1) = i - 1_pInt k_s(1) = i - 1_pInt
xi(1:3,i,j,k) = real(k_s, pReal)/virt_dim xi(1:3,i,j,k) = real(k_s, pReal)/virt_dim
enddo; enddo; enddo enddo; enddo; enddo
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! calculate the gamma operator ! calculate the gamma operator
if (restartInc == 1_pInt) then
C_ref = C
call IO_write_jobBinaryFile(777,'C_ref',size(C_ref))
write (777,rec=1) C_ref
close(777)
elseif (restartInc > 1_pInt) then
call IO_read_jobBinaryFile(777,'C_ref',trim(getSolverJobName()),size(C_ref))
read (777,rec=1) C_ref
close (777)
endif
if(memory_efficient) then ! allocate just single fourth order tensor if(memory_efficient) then ! allocate just single fourth order tensor
allocate (gamma_hat(1,1,1,3,3,3,3), source = 0.0_pReal) allocate (gamma_hat(1,1,1,3,3,3,3), source = 0.0_pReal)
else ! precalculation of gamma_hat field else ! precalculation of gamma_hat field
allocate (gamma_hat(res1_red ,res(2),res(3),3,3,3,3), source = 0.0_pReal) allocate (gamma_hat(res1_red ,res(2),res(3),3,3,3,3), source =0.0_pReal)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
@ -329,292 +315,14 @@ subroutine Solver_Init()
enddo; enddo; enddo enddo; enddo; enddo
gamma_hat(1,1,1, 1:3,1:3,1:3,1:3) = 0.0_pReal ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 gamma_hat(1,1,1, 1:3,1:3,1:3,1:3) = 0.0_pReal ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
endif endif
end subroutine Utilities_init
end subroutine Solver_Init real(pReal) function convolution(calcDivergence, field_aim,)
type(solution_t) function solution(guessmode,timeinc,timeinc_old,P_BC,F_BC,mask_stressVector,velgrad,rotation_BC)
use numerics, only: & use numerics, only: &
err_div_tol, & memory_efficient, &
err_stress_tolrel, & err_div_tol
err_stress_tolabs, & real(pReal), dimension(3,3) :: xiDyad ! product of wave vectors
rotation_tol, & real(pReal) :: err_div = 0.0_pReal
itmax,&
itmin, &
divergence_correction, &
DAMASK_NumThreadsInt, &
fftw_planner_flag, &
fftw_timelimit
use debug, only: &
debug_reset, &
debug_info
!--------------------------------------------------------------------------------------------------
! arrays for mixed boundary conditions
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
integer(pInt) :: size_reduced = 0_pInt
real(pReal), dimension(:,:), allocatable :: s_reduced, c_reduced ! reduced compliance and stiffness (only for stress BC)
real(pReal), dimension(6) :: sigma ! cauchy stress
real(pReal), dimension(6,6) :: dsde
real(pReal), dimension(9,9) :: temp99_Real ! compliance and stiffness in matrix notation
real(pReal), dimension(3,3,3,3) :: &
C_lastInc
integer(pInt) :: iter, ielem
!--------------------------------------------------------------------------------------------------
! loop variables, convergence etc.
real(pReal) :: timeinc, timeinc_old ! elapsed time, begin of interval, time interval
real(pReal) :: guessmode, err_div, err_stress, err_stress_tol
real(pReal), dimension(3,3) :: temp33_Real
integer(pInt) :: i, j, k, m, n
integer(pInt) :: CPFEM_mode=1_pInt
logical :: errmatinv, restartWrite
real(pReal) :: defgradDet
!--------------------------------------------------------------------------------------------------
! variables for additional output of divergence calculations
real(pReal), dimension(3,3) :: &
P_av, &
mask_stress, &
mask_defgrad, &
deltaF_aim, &
F_aim_lab, &
F_aim_lab_lastIter, &
P_av_lab
real(pReal), dimension(3,3,3,3) :: &
dPdF, &
C = 0.0_pReal, &
S_lastInc
logical :: velgrad
real(pReal), dimension(3,3) :: P_BC,F_BC,rotation_BC
logical, dimension(9) :: mask_stressVector
real(pReal) :: defgradDetMax, defgradDetMin
mask_stress = merge(ones,zeroes,reshape(mask_stressVector,[3,3]))
mask_defgrad = merge(zeroes,ones,reshape(mask_stressVector,[3,3]))
size_reduced = int(count(mask_stressVector), pInt)
allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal)
allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal)
if (velgrad) then ! calculate deltaF_aim from given L and current F
deltaF_aim = timeinc * mask_defgrad * math_mul33x33(F_BC, F_aim)
else ! deltaF_aim = fDot *timeinc where applicable
deltaF_aim = timeinc * mask_defgrad * F_BC
endif
!--------------------------------------------------------------------------------------------------
! winding forward of deformation aim in loadcase system
temp33_Real = F_aim
F_aim = F_aim &
+ guessmode * mask_stress * (F_aim - F_aim_lastInc)*timeinc/timeinc_old &
+ deltaF_aim
F_aim_lastInc = temp33_Real
!--------------------------------------------------------------------------------------------------
! winding forward of deformation aim in loadcase system
temp33_Real = F_aim
F_aim = F_aim &
+ guessmode * mask_stress * (F_aim - F_aim_lastInc)*timeinc/timeinc_old &
+ deltaF_aim
F_aim_lastInc = temp33_Real
!--------------------------------------------------------------------------------------------------
! update local deformation gradient and coordinates
deltaF_aim = math_rotate_backward33(deltaF_aim,rotation_BC)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
temp33_Real = F(i,j,k,1:3,1:3)
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
+ guessmode * (F(i,j,k,1:3,1:3) - F_lastInc(i,j,k,1:3,1:3))& ! guessing...
*timeinc/timeinc_old &
+ (1.0_pReal-guessmode) * deltaF_aim ! if not guessing, use prescribed average deformation where applicable
F_lastInc(i,j,k,1:3,1:3) = temp33_Real
enddo; enddo; enddo
call deformed_fft(res,geomdim,math_rotate_backward33(F_aim,rotation_BC),& ! calculate current coordinates
1.0_pReal,F_lastInc,coordinates)
!--------------------------------------------------------------------------------------------------
! calculate reduced compliance
if(size_reduced > 0_pInt) then ! calculate compliance in case stress BC is applied
C_lastInc = math_rotate_forward3333(C,rotation_BC) ! calculate stiffness from former inc
temp99_Real = math_Plain3333to99(C_lastInc)
k = 0_pInt ! build reduced stiffness
do n = 1_pInt,9_pInt
if(mask_stressVector(n)) then
k = k + 1_pInt
j = 0_pInt
do m = 1_pInt,9_pInt
if(mask_stressVector(m)) then
j = j + 1_pInt
c_reduced(k,j) = temp99_Real(n,m)
endif; enddo; endif; enddo
call math_invert(size_reduced, c_reduced, s_reduced, i, errmatinv) ! invert reduced stiffness
if(errmatinv) call IO_error(error_ID=400_pInt)
temp99_Real = 0.0_pReal ! build full compliance
k = 0_pInt
do n = 1_pInt,9_pInt
if(mask_stressVector(n)) then
k = k + 1_pInt
j = 0_pInt
do m = 1_pInt,9_pInt
if(mask_stressVector(m)) then
j = j + 1_pInt
temp99_Real(n,m) = s_reduced(k,j)
endif; enddo; endif; enddo
S_lastInc = (math_Plain99to3333(temp99_Real))
endif
iter = 0_pInt
err_div = huge(err_div_tol) ! go into loop
!##################################################################################################
! convergence loop (looping over iterations)
!##################################################################################################
do while((iter < itmax .and. (err_div > err_div_tol .or. err_stress > err_stress_tol))&
.or. iter < itmin)
iter = iter + 1_pInt
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
P_av = math_rotate_forward33(P_av_lab,rotation_BC)
write (6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'Piola-Kirchhoff stress / MPa =',&
math_transpose33(P_av)/1.e6_pReal
!--------------------------------------------------------------------------------------------------
! stress BC handling
if(size_reduced > 0_pInt) then ! calculate stress BC if applied
err_stress = maxval(abs(mask_stress * (P_av - P_BC))) ! maximum deviaton (tensor norm not applicable)
err_stress_tol = min(maxval(abs(P_av)) * err_stress_tolrel,err_stress_tolabs) ! don't use any tensor norm for the relative criterion because the comparison should be coherent
write(6,'(a)') ''
write(6,'(a)') '... correcting deformation gradient to fulfill BCs ...............'
write(6,'(a,f6.2,a,es11.4,a)') 'error stress = ', err_stress/err_stress_tol, &
' (',err_stress,' Pa)'
F_aim = F_aim - math_mul3333xx33(S_lastInc, ((P_av - P_BC))) ! residual on given stress components
write(6,'(a,1x,es11.4)')'determinant of new deformation = ',math_det33(F_aim)
else
err_stress_tol = +huge(1.0_pReal)
endif
F_aim_lab = math_rotate_backward33(F_aim,rotation_BC) ! boundary conditions from load frame into lab (Fourier) frame
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!--------------------------------------------------------------------------------------------------
! report begin of new iteration
write(6,'(a)') ''
write(6,'(a)') '=================================================================='
write(6,'(3(a,i6.6))') ' @ Iter. ',itmin,' < ',iter,' < ',itmax
write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'deformation gradient aim =',&
math_transpose33(F_aim)
write(6,'(a)') ''
write(6,'(a)') '... update stress field P(F) .....................................'
if (restartWrite) write(6,'(a)') 'writing restart info for last increment'
if(restartWrite) then
write(6,'(a)') 'writing converged results for restart'
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(F_lastInc)) ! writing deformation gradient field to file
write (777,rec=1) F_LastInc
close (777)
call IO_write_jobBinaryFile(777,'C',size(C))
write (777,rec=1) C
close(777)
endif
F_aim_lab_lastIter = math_rotate_backward33(F_aim,rotation_BC)
!--------------------------------------------------------------------------------------------------
! evaluate constitutive response
ielem = 0_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(3_pInt,& ! collect cycle
coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),F(i,j,k,1:3,1:3), &
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde,&
P(i,j,k,1:3,1:3),dPdF)
enddo; enddo; enddo
P = 0.0_pReal ! needed because of the padding for FFTW
C = 0.0_pReal
P_av_lab = 0.0_pReal
ielem = 0_pInt
call debug_reset()
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1,
coordinates(i,j,k,1:3),F_lastInc(i,j,k,1:3,1:3), F(i,j,k,1:3,1:3), & ! others get 2 (saves winding forward effort)
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde, &
P(i,j,k,1:3,1:3),dPdF)
CPFEM_mode = 2_pInt
C = C + dPdF
P_av_lab = P_av_lab + P(i,j,k,1:3,1:3)
enddo; enddo; enddo
call debug_info()
restartWrite = .false.
P_av_lab = P_av_lab * wgt
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
P_av = math_rotate_forward33(P_av_lab,rotation_BC)
write (6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'Piola-Kirchhoff stress / MPa =',&
math_transpose33(P_av)/1.e6_pReal
!--------------------------------------------------------------------------------------------------
! stress BC handling
if(size_reduced > 0_pInt) then ! calculate stress BC if applied
err_stress = maxval(abs(mask_stress * (P_av - P_BC))) ! maximum deviaton (tensor norm not applicable)
err_stress_tol = min(maxval(abs(P_av)) * err_stress_tolrel,err_stress_tolabs) ! don't use any tensor norm for the relative criterion because the comparison should be coherent
write(6,'(a)') ''
write(6,'(a)') '... correcting deformation gradient to fulfill BCs ...............'
write(6,'(a,f6.2,a,es11.4,a)') 'error stress = ', err_stress/err_stress_tol, &
' (',err_stress,' Pa)'
F_aim = F_aim - math_mul3333xx33(S_lastInc, ((P_av - P_BC))) ! residual on given stress components
write(6,'(a,1x,es11.4)')'determinant of new deformation = ',math_det33(F_aim)
else
err_stress_tol = +huge(1.0_pReal)
endif
F_aim_lab = math_rotate_backward33(F_aim,rotation_BC)
field_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = P
call convolution(.True.,F_aim_lab_lastIter - F_aim_lab)
!--------------------------------------------------------------------------------------------------
! updated deformation gradient
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) - field_real(i,j,k,1:3,1:3)*wgt ! F(x)^(n+1) = F(x)^(n) + correction; *wgt: correcting for missing normalization
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! calculate bounds of det(F) and report
if(debugGeneral) then
defgradDetMax = -huge(1.0_pReal)
defgradDetMin = +huge(1.0_pReal)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
defgradDet = math_det33(F(i,j,k,1:3,1:3))
defgradDetMax = max(defgradDetMax,defgradDet)
defgradDetMin = min(defgradDetMin,defgradDet)
enddo; enddo; enddo
write(6,'(a,1x,es11.4)') 'max determinant of deformation =', defgradDetMax
write(6,'(a,1x,es11.4)') 'min determinant of deformation =', defgradDetMin
endif
enddo ! end looping when convergency is achieved
CPFEM_mode = 1_pInt ! winding forward
C = C * wgt
deallocate(c_reduced)
deallocate(s_reduced)
end function solution
subroutine convolution(calcDivergence, field_aim)
real(pReal) :: err_div
real(pReal), dimension(3,3) :: temp33_Real real(pReal), dimension(3,3) :: temp33_Real
integer(pInt) :: i, j, k, l, m, n, q integer(pInt) :: i, j, k, l, m, n, q
@ -742,8 +450,8 @@ subroutine convolution(calcDivergence, field_aim)
write(6,'(a,es11.4)') 'error divergence FT max = ',err_div_max write(6,'(a,es11.4)') 'error divergence FT max = ',err_div_max
write(6,'(a,es11.4)') 'error divergence Real max = ',err_real_div_max write(6,'(a,es11.4)') 'error divergence Real max = ',err_real_div_max
endif endif
! write(6,'(a,f6.2,a,es11.4,a)') 'error divergence = ', err_div/err_div_tol,& write(6,'(a,f6.2,a,es11.4,a)') 'error divergence = ', err_div/err_div_tol,&
! ' (',err_div,' N/m³)' ' (',err_div,' N/m³)'
end if end if
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! to the actual spectral method calculation (mechanical equilibrium) ! to the actual spectral method calculation (mechanical equilibrium)
@ -832,8 +540,142 @@ subroutine convolution(calcDivergence, field_aim)
maxval(math_symmetric33(temp33_real))/& maxval(math_symmetric33(temp33_real))/&
maxval(math_skew33(temp33_real)) maxval(math_skew33(temp33_real))
endif endif
field_real = field_real * wgt
end subroutine convolution convolution = err_div/err_div_tol
end function convolution
end module DAMASK_spectralSolver function S_lastInc(rot_BC,mask_stressVector1)
real(pReal), dimension(3,3,3,3) :: S_lastInc
integer(pInt) :: i, j, k, m,n
real(pReal), dimension(3,3), intent(in) :: rot_BC
logical, dimension(9), intent(in) :: mask_stressVector1
real(pReal), dimension(3,3,3,3) :: C_lastInc
real(pReal), dimension(9,9) :: temp99_Real
integer(pInt) :: size_reduced = 0_pInt
real(pReal), dimension(:,:), allocatable :: s_reduced, c_reduced ! reduced compliance and stiffness (only for stress BC)
logical :: errmatinv
size_reduced = count(mask_stressVector1)
if (allocated(c_reduced)) deallocate(c_reduced)
if (allocated(c_reduced)) deallocate(c_reduced)
allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal)
allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal)
C_lastInc = math_rotate_forward3333(C,rot_BC) ! calculate stiffness from former inc
temp99_Real = math_Plain3333to99(C_lastInc)
k = 0_pInt ! build reduced stiffness
do n = 1_pInt,9_pInt
if(mask_stressVector1(n)) then
k = k + 1_pInt
j = 0_pInt
do m = 1_pInt,9_pInt
if(mask_stressVector1(m)) then
j = j + 1_pInt
c_reduced(k,j) = temp99_Real(n,m)
endif; enddo; endif; enddo
call math_invert(size_reduced, c_reduced, s_reduced, i, errmatinv) ! invert reduced stiffness
if(errmatinv) call IO_error(error_ID=400_pInt)
temp99_Real = 0.0_pReal ! build full compliance
k = 0_pInt
do n = 1_pInt,9_pInt
if(mask_stressVector1(n)) then
k = k + 1_pInt
j = 0_pInt
do m = 1_pInt,9_pInt
if(mask_stressVector1(m)) then
j = j + 1_pInt
temp99_Real(n,m) = s_reduced(k,j)
endif; enddo; endif; enddo
S_lastInc = (math_Plain99to3333(temp99_Real))
if (allocated(c_reduced)) deallocate(c_reduced)
if (allocated(c_reduced)) deallocate(c_reduced)
end function S_lastInc
!--------------------------------------------------------------------------------------------------
! calculate reduced compliance
real(pReal) function BCcorrection(mask_stressVector,P_BC,S_lastInc)
use numerics, only: err_stress_tolrel, err_stress_tolabs
logical, dimension(9) :: mask_stressVector
real(pReal) :: err_stress, err_stress_tol
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
real(pReal), dimension(3,3,3,3) :: S_lastInc
real(pReal), dimension(3,3) :: &
P_BC , &
mask_stress, &
mask_defgrad
mask_stress = merge(ones,zeroes,reshape(mask_stressVector,[3,3]))
mask_defgrad = merge(zeroes,ones,reshape(mask_stressVector,[3,3]))
!--------------------------------------------------------------------------------------------------
! stress BC handling
! calculate stress BC if applied
err_stress = maxval(abs(mask_stress * (P_av - P_BC))) ! maximum deviaton (tensor norm not applicable)
err_stress_tol = min(maxval(abs(P_av)) * err_stress_tolrel,err_stress_tolabs) ! don't use any tensor norm for the relative criterion because the comparison should be coherent
write(6,'(a)') ''
write(6,'(a)') '... correcting deformation gradient to fulfill BCs ...............'
write(6,'(a,f6.2,a,es11.4,a)') 'error stress = ', err_stress/err_stress_tol, &
' (',err_stress,' Pa)'
F_aim = F_aim - math_mul3333xx33(S_lastInc, ((P_av - P_BC))) ! residual on given stress components
write(6,'(a,1x,es11.4)')'determinant of new deformation = ',math_det33(F_aim)
BCcorrection = err_stress/err_stress_tol
end function BCcorrection
subroutine constitutiveResponse(F,P,ForwardData,timeinc)
use debug, only: &
debug_reset, &
debug_info
use CPFEM, only: &
CPFEM_general
use FEsolving, only: restartWrite
real(pReal) :: timeinc
logical :: ForwardData
integer(pInt) :: i, j, k, ielem
integer(pInt) :: CPFEM_mode
real(pReal), dimension(3,3,3,3) :: dPdF
real(pReal), dimension(6) :: sigma ! cauchy stress
real(pReal), dimension(6,6) :: dsde
real(pReal), dimension(3,3) :: P_av_lab, rotation_BC
if (ForwardData) then
CPFEM_mode = 1_pInt
else
CPFEM_mode = 2_pInt
endif
write(6,'(a)') ''
write(6,'(a)') '... update stress field P(F) .....................................'
ielem = 0_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(3_pInt,& ! collect cycle
coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),F(i,j,k,1:3,1:3), &
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde,P(i,j,k,1:3,1:3),dPdF)
enddo; enddo; enddo
P = 0.0_pReal ! needed because of the padding for FFTW
C = 0.0_pReal
P_av_lab = 0.0_pReal
ielem = 0_pInt
call debug_reset()
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1,
coordinates(i,j,k,1:3),F_lastInc(i,j,k,1:3,1:3), F(i,j,k,1:3,1:3), & ! others get 2 (saves winding forward effort)
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde,P(i,j,k,1:3,1:3),dPdF)
CPFEM_mode = 2_pInt
C = C + dPdF
P_av_lab = P_av_lab + P(i,j,k,1:3,1:3)
enddo; enddo; enddo
call debug_info()
restartWrite = .false.
P_av_lab = P_av_lab * wgt
P_av = math_rotate_forward33(P_av_lab,rotation_BC)
write (6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'Piola-Kirchhoff stress / MPa =',&
math_transpose33(P_av)/1.e6_pReal
C = C * wgt
end subroutine constitutiveResponse
end module DAMASK_spectral_Utilities