Crystal.f90 contains now the twin systems (at least for fcc, not implemented for bcc and hcp).

Schmid and transformations matrices for twin systemss are defined and constructed. Twin systems are specified using the type of variables as slip systems:
"MaxNTwin", "MaxMaxNtwin" ...
This commit is contained in:
Luc Hantcherli 2007-12-07 12:36:17 +00:00
parent f63f6949cc
commit e18f304c5a
1 changed files with 70 additions and 1 deletions

View File

@ -23,14 +23,28 @@ integer(pInt), parameter :: crystal_MaxCrystalStructure = 3
!* (has to be changed according the definition of slip systems)
integer(pInt), dimension(crystal_MaxCrystalStructure), parameter :: crystal_MaxNslipOfStructure = &
reshape((/12,48,12/),(/crystal_MaxCrystalStructure/))
!* Total number of twin systems per crystal structure
!* (has to be changed according the definition of twin systems)
integer(pInt), dimension(crystal_MaxCrystalStructure), parameter :: crystal_MaxNtwinOfStructure = &
reshape((/12,12,6/),(/crystal_MaxCrystalStructure/))
!* Maximum number of slip systems over crystal structures
integer(pInt), parameter :: crystal_MaxMaxNslipOfStructure = 48
!* Maximum number of twin systems over crystal structures
integer(pInt), parameter :: crystal_MaxMaxNtwinOfStructure = 12
!* Slip direction, slip normales and Schmid matrices
real(pReal), dimension(3,3,crystal_MaxMaxNslipOfStructure,crystal_MaxCrystalStructure) :: crystal_Sslip
real(pReal), dimension(6,crystal_MaxMaxNslipOfStructure,crystal_MaxCrystalStructure) :: crystal_Sslip_v
real(pReal), dimension(3,crystal_MaxMaxNslipOfStructure,crystal_MaxCrystalStructure) :: crystal_sn
real(pReal), dimension(3,crystal_MaxMaxNslipOfStructure,crystal_MaxCrystalStructure) :: crystal_sd
real(pReal), dimension(3,crystal_MaxMaxNslipOfStructure,crystal_MaxCrystalStructure) :: crystal_st
!* twin direction, twin normales, Schmid matrices and transformation matrices
real(pReal), dimension(3,3,crystal_MaxMaxNtwinOfStructure,crystal_MaxCrystalStructure) :: crystal_Stwin
real(pReal), dimension(6,crystal_MaxMaxNtwinOfStructure,crystal_MaxCrystalStructure) :: crystal_Stwin_v
real(pReal), dimension(3,crystal_MaxMaxNtwinOfStructure,crystal_MaxCrystalStructure) :: crystal_tn
real(pReal), dimension(3,crystal_MaxMaxNtwinOfStructure,crystal_MaxCrystalStructure) :: crystal_td
real(pReal), dimension(3,crystal_MaxMaxNtwinOfStructure,crystal_MaxCrystalStructure) :: crystal_tt
real(pReal), dimension(3,3,crystal_MaxMaxNtwinOfStructure,crystal_MaxCrystalStructure) :: crystal_Qtwin
!* Slip_slip interaction matrices
integer(pInt), dimension(crystal_MaxMaxNslipOfStructure,crystal_MaxMaxNslipOfStructure,crystal_MaxCrystalStructure) :: &
crystal_SlipIntType
@ -50,6 +64,21 @@ data crystal_sd(:,10,1)/ 0, 1, 1/ ; data crystal_sn(:,10,1)/-1, 1,-1/
data crystal_sd(:,11,1)/ 1, 0,-1/ ; data crystal_sn(:,11,1)/-1, 1,-1/
data crystal_sd(:,12,1)/-1,-1, 0/ ; data crystal_sn(:,12,1)/-1, 1,-1/
!*** Twin systems for FCC structures (1) ***
!* System {111}<112> Sort according Eisenlohr&Hantcherli
data crystal_td(:, 1,1)/-2, 1, 1/ ; data crystal_tn(:, 1,1)/ 1, 1, 1/
data crystal_td(:, 2,1)/ 1,-2, 1/ ; data crystal_tn(:, 2,1)/ 1, 1, 1/
data crystal_td(:, 3,1)/ 1, 1,-2/ ; data crystal_tn(:, 3,1)/ 1, 1, 1/
data crystal_td(:, 4,1)/ 2,-1, 1/ ; data crystal_tn(:, 4,1)/-1,-1, 1/
data crystal_td(:, 5,1)/-1, 2, 1/ ; data crystal_tn(:, 5,1)/-1,-1, 1/
data crystal_td(:, 6,1)/-1,-1,-2/ ; data crystal_tn(:, 6,1)/-1,-1, 1/
data crystal_td(:, 7,1)/-2,-1,-1/ ; data crystal_tn(:, 7,1)/ 1,-1,-1/
data crystal_td(:, 8,1)/ 1, 2,-1/ ; data crystal_tn(:, 8,1)/ 1,-1,-1/
data crystal_td(:, 9,1)/ 1,-1, 2/ ; data crystal_tn(:, 9,1)/ 1,-1,-1/
data crystal_td(:,10,1)/ 2, 1,-1/ ; data crystal_tn(:,10,1)/-1, 1,-1/
data crystal_td(:,11,1)/-1,-2,-1/ ; data crystal_tn(:,11,1)/-1, 1,-1/
data crystal_td(:,12,1)/-1, 1, 2/ ; data crystal_tn(:,12,1)/-1, 1,-1/
!*** Slip-Slip interactions for FCC structures (1) ***
data crystal_SlipIntType( 1,1:crystal_MaxNslipOfStructure(1),1)/1,2,2,4,6,5,3,5,5,4,5,6/
data crystal_SlipIntType( 2,1:crystal_MaxNslipOfStructure(1),1)/2,1,2,6,4,5,5,4,6,5,3,5/
@ -120,6 +149,11 @@ data crystal_sd(:,46,2)/ 1, 1, 1/ ; data crystal_sn(:,46,2)/-3, 2, 1/
data crystal_sd(:,47,2)/ 1, 1,-1/ ; data crystal_sn(:,47,2)/ 3,-2, 1/
data crystal_sd(:,48,2)/ 1,-1, 1/ ; data crystal_sn(:,48,2)/ 3, 2,-1/
!*** Twin systems for BCC structures (2) ***
!* System {112}<111>
!* Sort?
!* Not implemented yet
!*** Slip-Slip interactions for BCC structures (2) ***
data crystal_SlipIntType( 1,:,2)/1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/
data crystal_SlipIntType( 2,:,2)/2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/
@ -207,6 +241,11 @@ data crystal_sd(:,10,3)/-1, 0, 0/ ; data crystal_sn(:,10,3)/ 1, 0, 1/
data crystal_sd(:,11,3)/ 0,-1, 0/ ; data crystal_sn(:,11,3)/-1, 1, 1/
data crystal_sd(:,12,3)/ 1, 1, 0/ ; data crystal_sn(:,12,3)/ 1,-1, 1/
!*** Twin systems for HCP structures (2) ***
!* System {1012}<1011>
!* Sort?
!* Not implemented yet
!*** Slip-Slip interactions for HCP structures (3) ***
data crystal_SlipIntType( 1,1:crystal_MaxNslipOfStructure(3),3)/1,2,2,2,2,2,2,2,2,2,2,2/
data crystal_SlipIntType( 2,1:crystal_MaxNslipOfStructure(3),3)/2,1,2,2,2,2,2,2,2,2,2,2/
@ -242,6 +281,7 @@ subroutine crystal_SchmidMatrices()
!* Calculation of Schmid matrices *
!**************************************
use prec, only: pReal,pInt
use math, only: math_identity2nd
implicit none
!* Definition of variables
@ -250,7 +290,7 @@ real(pReal) invNorm
!* Iteration over the crystal structures
do l=1,crystal_MaxCrystalStructure
!* Iteration over the systems
!* Iteration over the slip systems
do k=1,crystal_MaxNslipOfStructure(l)
!* Definition of transverse direction st for the frame (sd,st,sn)
crystal_st(1,k,l)=crystal_sn(2,k,l)*crystal_sd(3,k,l)-crystal_sn(3,k,l)*crystal_sd(2,k,l)
@ -273,8 +313,37 @@ do l=1,crystal_MaxCrystalStructure
crystal_Sslip_v(5,k,l)=(crystal_Sslip(2,3,k,l)+crystal_Sslip(3,2,k,l))/dsqrt(2.0_pReal)
crystal_Sslip_v(6,k,l)=(crystal_Sslip(1,3,k,l)+crystal_Sslip(3,1,k,l))/dsqrt(2.0_pReal)
enddo
!* Iteration over the twin systems
do k=1,crystal_MaxNslipOfStructure(l)
!* Definition of transverse direction tt for the frame (td,tt,tn)
crystal_tt(1,k,l)=crystal_tn(2,k,l)*crystal_td(3,k,l)-crystal_tn(3,k,l)*crystal_td(2,k,l)
crystal_tt(2,k,l)=crystal_tn(3,k,l)*crystal_td(1,k,l)-crystal_tn(1,k,l)*crystal_td(3,k,l)
crystal_tt(3,k,l)=crystal_tn(1,k,l)*crystal_td(2,k,l)-crystal_tn(2,k,l)*crystal_td(1,k,l)
!* Defintion of Schmid matrix and transformation matrices
crystal_Qtwin(:,:,k,l)=-math_identity2nd(3)
forall (i=1:3,j=1:3)
crystal_Stwin(i,j,k,l)=crystal_td(i,k,l)*crystal_tn(j,k,l)
crystal_Qtwin(i,j,k,l)=crystal_Qtwin(i,j,k,l)+2*crystal_tn(i,k,l)*crystal_tn(j,k,l)
endforall
!* Normalization of Schmid matrix
invNorm=dsqrt(1.0_pReal/((crystal_tn(1,k,l)**2+crystal_tn(2,k,l)**2+crystal_tn(3,k,l)**2)*&
(crystal_td(1,k,l)**2+crystal_td(2,k,l)**2+crystal_td(3,k,l)**2)))
crystal_Stwin(:,:,k,l)=crystal_Stwin(:,:,k,l)*invNorm
!* Vectorization of normalized Schmid matrix
crystal_Stwin_v(1,k,l)=crystal_Stwin(1,1,k,l)
crystal_Stwin_v(2,k,l)=crystal_Stwin(2,2,k,l)
crystal_Stwin_v(3,k,l)=crystal_Stwin(3,3,k,l)
!* be compatible with Mandel notation of Tstar
crystal_Stwin_v(4,k,l)=(crystal_Stwin(1,2,k,l)+crystal_Stwin(2,1,k,l))/dsqrt(2.0_pReal)
crystal_Stwin_v(5,k,l)=(crystal_Stwin(2,3,k,l)+crystal_Stwin(3,2,k,l))/dsqrt(2.0_pReal)
crystal_Stwin_v(6,k,l)=(crystal_Stwin(1,3,k,l)+crystal_Stwin(3,1,k,l))/dsqrt(2.0_pReal)
enddo
enddo
end subroutine
END MODULE