simplified

This commit is contained in:
Martin Diehl 2019-06-07 12:21:12 +02:00
parent 86a720be8c
commit deda700be1
1 changed files with 148 additions and 214 deletions

View File

@ -1,72 +1,35 @@
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Christoph Koords, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Sets up the mesh for the solvers MSC.Marc, Abaqus and the spectral solver
!> @brief Parse geometry file to set up discretization and geometry for nonlocal model
!--------------------------------------------------------------------------------------------------
module mesh
#include <petsc/finclude/petscsys.h>
use, intrinsic :: iso_c_binding
use PETScsys
use prec
use system_routines
use DAMASK_interface
use IO
use debug
use discretization
use geometry_plastic_nonlocal
use mesh_base
use DAMASK_interface
use PETScsys
use IO
use debug
use numerics
use FEsolving
implicit none
private
integer(pInt) :: &
mesh_Nnodes
integer(pInt), dimension(:), allocatable :: &
microGlobal
integer(pInt), dimension(:), allocatable :: &
mesh_homogenizationAt
integer(pInt), dimension(:,:), allocatable :: &
mesh_element !< entryCount and list of elements containing node
real(pReal), public, protected :: &
mesh_unitlength !< physical length of one unit in mesh
real(pReal), dimension(:,:), allocatable :: &
mesh_node !< node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
real(pReal), dimension(:,:), allocatable :: &
mesh_node0 !< node x,y,z coordinates (initially!)
real(pReal), dimension(:,:,:), allocatable, public, protected :: &
mesh_ipArea !< area of interface to neighboring IP (initially!)
real(pReal), dimension(:,:,:), allocatable, public :: &
mesh_ipCoordinates !< IP x,y,z coordinates (after deformation!)
real(pReal),dimension(:,:,:,:), allocatable, public, protected :: &
mesh_ipAreaNormal !< area normal of interface to neighboring IP (initially!)
logical, dimension(3), public, parameter :: mesh_periodicSurface = .true. !< flag indicating periodic outer surfaces (used for fluxes)
integer(pInt) :: &
mesh_NcpElemsGlobal !< total number of CP elements in global mesh
! grid specific
integer(pInt), dimension(3), public, protected :: &
integer, dimension(3), public, protected :: &
grid !< (global) grid
integer(pInt), public, protected :: & !< total number of CP elements in global mesh
integer, public, protected :: &
grid3, & !< (local) grid in 3rd direction
grid3Offset !< (local) grid offset in 3rd direction
real(pReal), dimension(3), public, protected :: &
geomSize
real(pReal), public, protected :: &
@ -76,9 +39,6 @@ module mesh
public :: &
mesh_init
type(tMesh) :: theMesh
contains
@ -88,87 +48,69 @@ contains
!--------------------------------------------------------------------------------------------------
subroutine mesh_init(ip,el)
include 'fftw3-mpi.f03'
integer, intent(in), optional :: el, ip
integer(pInt), intent(in), optional :: el, ip
include 'fftw3-mpi.f03'
integer(C_INTPTR_T) :: devNull, local_K, local_K_offset
integer :: ierr, worldsize, j
real(pReal), dimension(:,:), allocatable :: IPvolume
integer, dimension(:), allocatable :: &
microstructureAt, &
homogenizationAt
logical :: myDebug
write(6,'(/,a)') ' <<<+- mesh init -+>>>'
mesh_unitlength = numerics_unitlength ! set physical extent of a length unit in mesh
myDebug = (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt)
call fftw_mpi_init()
call mesh_spectral_read_grid()
call mesh_spectral_read_grid(grid,geomSize,microstructureAt,homogenizationAt)
call MPI_comm_size(PETSC_COMM_WORLD, worldsize, ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='MPI_comm_size')
if(worldsize>grid(3)) call IO_error(894_pInt, ext_msg='number of processes exceeds grid(3)')
call fftw_mpi_init()
devNull = fftw_mpi_local_size_3d(int(grid(3),C_INTPTR_T), &
int(grid(2),C_INTPTR_T), &
int(grid(1),C_INTPTR_T)/2+1, &
PETSC_COMM_WORLD, &
local_K, & ! domain grid size along z
local_K_offset) ! domain grid offset along z
grid3 = int(local_K,pInt)
grid3Offset = int(local_K_offset,pInt)
grid3 = int(local_K)
grid3Offset = int(local_K_offset)
size3 = geomSize(3)*real(grid3,pReal) /real(grid(3),pReal)
size3Offset = geomSize(3)*real(grid3Offset,pReal)/real(grid(3),pReal)
mesh_NcpElemsGlobal = product(grid)
mesh_Nnodes = product(grid(1:2) + 1_pInt)*(grid3 + 1_pInt)
mesh_node0 = mesh_spectral_build_nodes()
mesh_node = mesh_node0
if (myDebug) write(6,'(a)') ' Built nodes'; flush(6)
call theMesh%init('grid',10,mesh_node)
call theMesh%setNelems(grid(1)*grid(2)*grid3)
call mesh_spectral_build_elements()
mesh_homogenizationAt = mesh_homogenizationAt(product(grid(1:2))*grid3Offset+1: &
microstructureAt = microstructureAt(product(grid(1:2))*grid3Offset+1: &
product(grid(1:2))*(grid3Offset+grid3)) ! reallocate/shrink in case of MPI
homogenizationAt = homogenizationAt(product(grid(1:2))*grid3Offset+1: &
product(grid(1:2))*(grid3Offset+grid3)) ! reallocate/shrink in case of MPI
if (myDebug) write(6,'(a)') ' Built elements'; flush(6)
mesh_ipCoordinates = mesh_build_ipCoordinates()
mesh_ipCoordinates = mesh_build_ipCoordinates([grid(1:2),grid3],[geomSize(1:2),size3],grid3Offset)
if (myDebug) write(6,'(a)') ' Built IP coordinates'; flush(6)
allocate(IPvolume(1,theMesh%nElems),source=product([geomSize(1:2),size3]/real([grid(1:2),grid3])))
allocate(IPvolume(1,grid(1)*grid(2)*grid3),source=product([geomSize(1:2),size3]/real([grid(1:2),grid3])))
call geometry_plastic_nonlocal_setIPvolume(IPvolume)
if (myDebug) write(6,'(a)') ' Built IP volumes'; flush(6)
mesh_ipArea = mesh_build_ipAreas([geomSize(1:2),size3],[grid(1:2),grid3])
call geometry_plastic_nonlocal_setIParea(mesh_IParea)
mesh_ipAreaNormal = mesh_build_ipNormals(grid(1)*grid(2)*grid3)
call geometry_plastic_nonlocal_setIPareaNormal(mesh_ipAreaNormal)
if (myDebug) write(6,'(a)') ' Built IP areas'; flush(6)
call geometry_plastic_nonlocal_setIParea(mesh_build_ipAreas([geomSize(1:2),size3],[grid(1:2),grid3]))
call geometry_plastic_nonlocal_setIPareaNormal(mesh_build_ipNormals(grid(1)*grid(2)*grid3))
call geometry_plastic_nonlocal_setIPneighborhood(mesh_spectral_build_ipNeighborhood([grid(1:2),grid3]))
if (myDebug) write(6,'(a)') ' Built IP neighborhood'; flush(6)
if (myDebug) write(6,'(a)') ' Built nonlocal geometry'; flush(6)
if (debug_e < 1 .or. debug_e > theMesh%nElems) &
call IO_error(602_pInt,ext_msg='element') ! selected element does not exist
if (debug_i < 1 .or. debug_i > theMesh%elem%nIPs) &
call IO_error(602_pInt,ext_msg='IP') ! selected element does not have requested IP
if (debug_e < 1 .or. debug_e > grid(1)*grid(2)*grid3) &
call IO_error(602,ext_msg='element') ! selected element does not exist
if (debug_i /= 1) &
call IO_error(602,ext_msg='IP') ! selected element does not have requested IP
FEsolving_execElem = [ 1_pInt,theMesh%nElems ] ! parallel loop bounds set to comprise all DAMASK elements
allocate(FEsolving_execIP(2_pInt,theMesh%nElems), source=1_pInt) ! parallel loop bounds set to comprise from first IP...
forall (j = 1_pInt:theMesh%nElems) FEsolving_execIP(2,j) = theMesh%elem%nIPs ! ...up to own IP count for each element
FEsolving_execElem = [1,grid(1)*grid(2)*grid3] ! parallel loop bounds set to comprise all DAMASK elements
allocate(FEsolving_execIP(2,grid(1)*grid(2)*grid3), source=1) ! parallel loop bounds set to comprise from first IP...
forall (j = 1:grid(1)*grid(2)*grid3) FEsolving_execIP(2,j) = 1 ! ...up to own IP count for each element
call discretization_init(mesh_element(1,:),mesh_element(2,:),&
call discretization_init(homogenizationAt,microstructureAt, &
reshape(mesh_ipCoordinates,[3,grid(1)*grid(2)*grid3]),&
mesh_node0)
mesh_spectral_build_nodes([grid(1:2),grid3],[geomSize(1:2),size3],grid3Offset))
end subroutine mesh_init
@ -178,7 +120,13 @@ end subroutine mesh_init
!> @details important variables have an implicit "save" attribute. Therefore, this function is
! supposed to be called only once!
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_read_grid()
subroutine mesh_spectral_read_grid(grid,geomSize,microstructure,homogenization)
integer, dimension(3), intent(out) :: grid ! grid (for all processes!)
real(pReal), dimension(3), intent(out) :: geomSize ! size (for all processes!)
integer, dimension(:), intent(out), allocatable :: &
microstructure, &
homogenization
character(len=:), allocatable :: rawData
character(len=65536) :: line
@ -279,8 +227,8 @@ subroutine mesh_spectral_read_grid()
if(any(geomSize < 0.0_pReal)) &
call IO_error(error_ID = 842_pInt, ext_msg='size (mesh_spectral_read_grid)')
allocate(microGlobal(product(grid)), source = -1_pInt)
allocate(mesh_homogenizationAt(product(grid)), source = h) ! too large in case of MPI (shrink later, not very elegant)
allocate(microstructure(product(grid)), source = -1) ! too large in case of MPI (shrink later, not very elegant)
allocate(homogenization(product(grid)), source = h) ! too large in case of MPI (shrink later, not very elegant)
!--------------------------------------------------------------------------------------------------
! read and interpret content
@ -295,18 +243,18 @@ subroutine mesh_spectral_read_grid()
noCompression: if (chunkPos(1) /= 3) then
c = chunkPos(1)
microGlobal(e:e+c-1_pInt) = [(IO_intValue(line,chunkPos,i+1_pInt), i=0_pInt, c-1_pInt)]
microstructure(e:e+c-1_pInt) = [(IO_intValue(line,chunkPos,i+1_pInt), i=0_pInt, c-1_pInt)]
else noCompression
compression: if (IO_lc(IO_stringValue(line,chunkPos,2)) == 'of') then
c = IO_intValue(line,chunkPos,1)
microGlobal(e:e+c-1_pInt) = [(IO_intValue(line,chunkPos,3),i = 1_pInt,IO_intValue(line,chunkPos,1))]
microstructure(e:e+c-1_pInt) = [(IO_intValue(line,chunkPos,3),i = 1_pInt,IO_intValue(line,chunkPos,1))]
else if (IO_lc(IO_stringValue(line,chunkPos,2)) == 'to') then compression
c = abs(IO_intValue(line,chunkPos,3) - IO_intValue(line,chunkPos,1)) + 1_pInt
o = merge(+1_pInt, -1_pInt, IO_intValue(line,chunkPos,3) > IO_intValue(line,chunkPos,1))
microGlobal(e:e+c-1_pInt) = [(i, i = IO_intValue(line,chunkPos,1),IO_intValue(line,chunkPos,3),o)]
microstructure(e:e+c-1_pInt) = [(i, i = IO_intValue(line,chunkPos,1),IO_intValue(line,chunkPos,3),o)]
else compression
c = chunkPos(1)
microGlobal(e:e+c-1_pInt) = [(IO_intValue(line,chunkPos,i+1_pInt), i=0_pInt, c-1_pInt)]
microstructure(e:e+c-1_pInt) = [(IO_intValue(line,chunkPos,i+1_pInt), i=0_pInt, c-1_pInt)]
endif compression
endif noCompression
@ -321,9 +269,12 @@ end subroutine mesh_spectral_read_grid
!---------------------------------------------------------------------------------------------------
!> @brief Calculates position of nodes (pretend to be an element)
!---------------------------------------------------------------------------------------------------
pure function mesh_spectral_build_nodes()
pure function mesh_spectral_build_nodes(grid,geomSize,grid3Offset) result(nodes)
real(pReal), dimension(3,mesh_Nnodes) :: mesh_spectral_build_nodes
integer, dimension(3), intent(in) :: grid ! grid (for this process!)
real(pReal), dimension(3), intent(in) :: geomSize ! size (for this process!)
integer, intent(in) :: grid3Offset ! grid(3) offset
real(pReal), dimension(3,product(grid+1)) :: nodes
integer :: n,a,b,c
n = 0
@ -331,7 +282,7 @@ pure function mesh_spectral_build_nodes()
do b = 0, grid(2)
do a = 0, grid(1)
n = n + 1
mesh_spectral_build_nodes(1:3,n) = geomSize/real(grid,pReal) * real([a,b,grid3Offset+c],pReal)
nodes(1:3,n) = geomSize/real(grid,pReal) * real([a,b,grid3Offset+c],pReal)
enddo
enddo
enddo
@ -342,17 +293,20 @@ end function mesh_spectral_build_nodes
!---------------------------------------------------------------------------------------------------
!> @brief Calculates position of IPs/cell centres (pretend to be an element)
!---------------------------------------------------------------------------------------------------
function mesh_build_ipCoordinates()
function mesh_build_ipCoordinates(grid,geomSize,grid3Offset) result(ipCoordinates)
real(pReal), dimension(3,1,theMesh%nElems) :: mesh_build_ipCoordinates
integer, dimension(3), intent(in) :: grid ! grid (for this process!)
real(pReal), dimension(3), intent(in) :: geomSize ! size (for this process!)
integer, intent(in) :: grid3Offset ! grid(3) offset
real(pReal), dimension(3,1,product(grid)) :: ipCoordinates
integer :: n,a,b,c
n = 0
do c = 1, grid3
do c = 1, grid(3)
do b = 1, grid(2)
do a = 1, grid(1)
n = n + 1
mesh_build_ipCoordinates(1:3,1,n) = geomSize/real(grid,pReal) * (real([a,b,grid3Offset+c],pReal) -0.5_pReal)
ipCoordinates(1:3,1,n) = geomSize/real(grid,pReal) * (real([a,b,grid3Offset+c],pReal) -0.5_pReal)
enddo
enddo
enddo
@ -360,27 +314,6 @@ function mesh_build_ipCoordinates()
end function mesh_build_ipCoordinates
!--------------------------------------------------------------------------------------------------
!> @brief Store FEid, type, material, texture, and node list per element.
!! Allocates global array 'mesh_element'
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_build_elements()
integer(pInt) :: &
e, &
elemOffset
allocate(mesh_element (2,theMesh%nElems), source = 0_pInt)
elemOffset = product(grid(1:2))*grid3Offset
do e=1, theMesh%nElems
mesh_element( 1,e) = mesh_homogenizationAt(e)
mesh_element( 2,e) = microGlobal(e+elemOffset)
enddo
end subroutine mesh_spectral_build_elements
!--------------------------------------------------------------------------------------------------
!> @brief build neighborhood relations for spectral
!> @details assign globals: mesh_ipNeighborhood
@ -396,7 +329,7 @@ pure function mesh_spectral_build_ipNeighborhood(grid) result(IPneighborhood)
e
e = 0
do z = 0,grid3-1
do z = 0,grid(3)-1
do y = 0,grid(2)-1
do x = 0,grid(1)-1
e = e + 1
@ -416,11 +349,11 @@ pure function mesh_spectral_build_ipNeighborhood(grid) result(IPneighborhood)
+ modulo(y-1,grid(2)) * grid(1) &
+ x &
+ 1
IPneighborhood(1,5,1,e) = modulo(z+1,grid3) * grid(1) * grid(2) &
IPneighborhood(1,5,1,e) = modulo(z+1,grid(3)) * grid(1) * grid(2) &
+ y * grid(1) &
+ x &
+ 1
IPneighborhood(1,6,1,e) = modulo(z-1,grid3) * grid(1) * grid(2) &
IPneighborhood(1,6,1,e) = modulo(z-1,grid(3)) * grid(1) * grid(2) &
+ y * grid(1) &
+ x &
+ 1
@ -438,6 +371,44 @@ pure function mesh_spectral_build_ipNeighborhood(grid) result(IPneighborhood)
end function mesh_spectral_build_ipNeighborhood
!--------------------------------------------------------------------------------------------------
!> @brief calculation of IP interface areas
!--------------------------------------------------------------------------------------------------
pure function mesh_build_ipAreas(geomSize,grid) result(IPareas)
real(pReal), dimension(3), intent(in) :: geomSize ! size (for this process!)
integer, dimension(3), intent(in) :: grid ! grid (for this process!)
real(pReal), dimension(6,1,product(grid)) :: IPareas
IPareas(1:2,1,:) = geomSize(2)/real(grid(2)) * geomSize(3)/real(grid(3))
IPareas(3:4,1,:) = geomSize(3)/real(grid(3)) * geomSize(1)/real(grid(1))
IPareas(5:6,1,:) = geomSize(1)/real(grid(1)) * geomSize(2)/real(grid(2))
end function mesh_build_ipAreas
!--------------------------------------------------------------------------------------------------
!> @brief calculation of IP interface areas normals
!--------------------------------------------------------------------------------------------------
pure function mesh_build_ipNormals(nElems) result(IPnormals)
integer, intent(in) :: nElems
real, dimension(3,6,1,nElems) :: IPnormals
IPnormals(1:3,1,1,:) = spread([+1.0_pReal, 0.0_pReal, 0.0_pReal],2,nElems)
IPnormals(1:3,2,1,:) = spread([-1.0_pReal, 0.0_pReal, 0.0_pReal],2,nElems)
IPnormals(1:3,3,1,:) = spread([ 0.0_pReal,+1.0_pReal, 0.0_pReal],2,nElems)
IPnormals(1:3,4,1,:) = spread([ 0.0_pReal,-1.0_pReal, 0.0_pReal],2,nElems)
IPnormals(1:3,5,1,:) = spread([ 0.0_pReal, 0.0_pReal,+1.0_pReal],2,nElems)
IPnormals(1:3,6,1,:) = spread([ 0.0_pReal, 0.0_pReal,-1.0_pReal],2,nElems)
end function mesh_build_ipNormals
!--------------------------------------------------------------------------------------------------
!> @brief builds mesh of (distorted) cubes for given coordinates (= center of the cubes)
!--------------------------------------------------------------------------------------------------
@ -512,41 +483,4 @@ function mesh_nodesAroundCentres(gDim,Favg,centres) result(nodes)
end function mesh_nodesAroundCentres
!--------------------------------------------------------------------------------------------------
!> @brief calculation of IP interface areas, allocate globals '_ipArea', and '_ipAreaNormal'
!--------------------------------------------------------------------------------------------------
pure function mesh_build_ipAreas(geomSize,grid) result(IPareas)
real(pReal), dimension(3), intent(in) :: geomSize ! size (for this process!)
integer, dimension(3), intent(in) :: grid ! grid (for this process!)
real(pReal), dimension(6,1,product(grid)) :: IPareas
IPareas(1:2,1,:) = geomSize(2)/real(grid(2)) * geomSize(3)/real(grid(3))
IPareas(3:4,1,:) = geomSize(3)/real(grid(3)) * geomSize(1)/real(grid(1))
IPareas(5:6,1,:) = geomSize(1)/real(grid(1)) * geomSize(2)/real(grid(2))
end function mesh_build_ipAreas
!--------------------------------------------------------------------------------------------------
!> @brief calculation of IP interface areas, allocate globals '_ipArea', and '_ipAreaNormal'
!--------------------------------------------------------------------------------------------------
pure function mesh_build_ipNormals(nElems) result(IPnormals)
integer, intent(in) :: nElems
real, dimension(3,6,1,nElems) :: IPnormals
IPnormals(1:3,1,1,:) = spread([+1.0_pReal, 0.0_pReal, 0.0_pReal],2,nElems)
IPnormals(1:3,2,1,:) = spread([-1.0_pReal, 0.0_pReal, 0.0_pReal],2,nElems)
IPnormals(1:3,3,1,:) = spread([ 0.0_pReal,+1.0_pReal, 0.0_pReal],2,nElems)
IPnormals(1:3,4,1,:) = spread([ 0.0_pReal,-1.0_pReal, 0.0_pReal],2,nElems)
IPnormals(1:3,5,1,:) = spread([ 0.0_pReal, 0.0_pReal,+1.0_pReal],2,nElems)
IPnormals(1:3,6,1,:) = spread([ 0.0_pReal, 0.0_pReal,-1.0_pReal],2,nElems)
end function mesh_build_ipNormals
end module mesh