updated analytic jacobian calculation to correctly take into account intermediate configuration Fi. improved convergence of Li loop in stress integration
This commit is contained in:
parent
0b59519a2a
commit
dd8458a775
|
@ -586,17 +586,19 @@ subroutine crystallite_stressAndItsTangent(updateJaco)
|
||||||
logical, dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
logical, dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
||||||
convergenceFlag_backup
|
convergenceFlag_backup
|
||||||
! local variables used for calculating analytic Jacobian
|
! local variables used for calculating analytic Jacobian
|
||||||
real(pReal) :: detInvFi
|
real(pReal) :: detFi
|
||||||
real(pReal), dimension(3,3) :: temp_33, &
|
real(pReal), dimension(3,3) :: temp_33, &
|
||||||
Fi, &
|
Fi, &
|
||||||
invFi, &
|
invFi, &
|
||||||
invFi0
|
invFi0
|
||||||
real(pReal), dimension(3,3,3,3) :: dSdFe, &
|
real(pReal), dimension(3,3,3,3) :: dSdFe, &
|
||||||
dSdF, &
|
dSdF, &
|
||||||
|
dSdFiInv, &
|
||||||
junk2, &
|
junk2, &
|
||||||
dLidS, &
|
dLidS, &
|
||||||
dLpdS, &
|
dLpdS, &
|
||||||
dFpinvdF, &
|
dFpinvdF, &
|
||||||
|
dFiinvdF, &
|
||||||
rhs_3333, &
|
rhs_3333, &
|
||||||
lhs_3333, &
|
lhs_3333, &
|
||||||
temp_3333
|
temp_3333
|
||||||
|
@ -1111,23 +1113,35 @@ subroutine crystallite_stressAndItsTangent(updateJaco)
|
||||||
|
|
||||||
! --- ANALYTIC JACOBIAN ---
|
! --- ANALYTIC JACOBIAN ---
|
||||||
|
|
||||||
!$OMP PARALLEL DO PRIVATE(dSdF,dSdFe,dLpdS,dFpinvdF,rhs_3333,lhs_3333,temp_99,temp_33,dLidS,&
|
!$OMP PARALLEL DO PRIVATE(dSdF,dSdFe,dSdFiInv,dLpdS,dFpinvdF,dFiinvdF,dLidS,rhs_3333,lhs_3333,&
|
||||||
!$OMP Fi,invFi,invFi0,detInvFi,temp_3333,myNgrains)
|
!$OMP Fi,invFi,invFi0,detFi,temp_99,temp_33,temp_3333,myNgrains)
|
||||||
elementLooping6: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
elementLooping6: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||||||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||||||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
||||||
do g = 1_pInt,myNgrains
|
do g = 1_pInt,myNgrains
|
||||||
|
Fi = constitutive_getFi(g,i,e)
|
||||||
|
detFi = math_det33(Fi)
|
||||||
|
invFi = math_inv33(Fi)
|
||||||
|
invFi0 = math_inv33(constitutive_getFi0(g,i,e))
|
||||||
call constitutive_TandItsTangent(temp_33,dSdFe,crystallite_Fe(1:3,1:3,g,i,e),g,i,e) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative
|
call constitutive_TandItsTangent(temp_33,dSdFe,crystallite_Fe(1:3,1:3,g,i,e),g,i,e) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative
|
||||||
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
||||||
|
dSdFe(1:3,1:3,o,p) = math_mul33x33(invFi,math_mul33x33(dSdFe(1:3,1:3,o,p), &
|
||||||
|
math_transpose33(invFi)))*detFi
|
||||||
|
dSdFiInv = 0.0_pReal
|
||||||
|
temp_33 = math_mul33x33(temp_33,math_transpose33(invFi))*detFi
|
||||||
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
||||||
|
dSdFiInv(o,1:3,p,1:3) = dSdFiInv(o,1:3,p,1:3) + math_I3(o,p)*temp_33
|
||||||
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
||||||
|
dSdFiInv(1:3,o,p,1:3) = dSdFiInv(1:3,o,p,1:3) + math_I3(o,p)*math_transpose33(temp_33)
|
||||||
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
||||||
|
dSdFiInv(1:3,1:3,o,p) = dSdFiInv(1:3,1:3,o,p) - math_Mandel6to33(crystallite_Tstar_v(1:6,g,i,e))*invFi(p,o)
|
||||||
|
|
||||||
call constitutive_LpAndItsTangent(temp_33,temp_99,crystallite_Tstar_v(1:6,g,i,e), &
|
call constitutive_LpAndItsTangent(temp_33,temp_99,crystallite_Tstar_v(1:6,g,i,e), &
|
||||||
g,i,e)
|
g,i,e)
|
||||||
dLpdS = reshape(temp_99,shape=[3,3,3,3])
|
dLpdS = reshape(temp_99,shape=[3,3,3,3])
|
||||||
call constitutive_LiAndItsTangent(temp_33,temp_99,crystallite_Tstar_v(1:6,g,i,e), &
|
call constitutive_LiAndItsTangent(temp_33,temp_99,crystallite_Tstar_v(1:6,g,i,e), &
|
||||||
crystallite_Lp(1:3,1:3,g,i,e), g,i,e)
|
crystallite_Lp(1:3,1:3,g,i,e), g,i,e)
|
||||||
dLidS = reshape(temp_99,shape=[3,3,3,3])
|
dLidS = reshape(temp_99,shape=[3,3,3,3])
|
||||||
Fi = constitutive_getFi(g,i,e)
|
|
||||||
invFi = math_inv33(Fi)
|
|
||||||
invFi0 = math_inv33(constitutive_getFi0(g,i,e))
|
|
||||||
detInvFi = math_det33(invFi)
|
|
||||||
|
|
||||||
temp_33 = math_transpose33(math_mul33x33(crystallite_invFp(1:3,1:3,g,i,e),invFi))
|
temp_33 = math_transpose33(math_mul33x33(crystallite_invFp(1:3,1:3,g,i,e),invFi))
|
||||||
rhs_3333 = 0.0_pReal
|
rhs_3333 = 0.0_pReal
|
||||||
|
@ -1135,17 +1149,24 @@ subroutine crystallite_stressAndItsTangent(updateJaco)
|
||||||
rhs_3333(p,o,1:3,1:3) = math_mul33x33(dSdFe(p,o,1:3,1:3),temp_33)
|
rhs_3333(p,o,1:3,1:3) = math_mul33x33(dSdFe(p,o,1:3,1:3),temp_33)
|
||||||
|
|
||||||
temp_3333 = 0.0_pReal
|
temp_3333 = 0.0_pReal
|
||||||
temp_33 = math_mul33x33(crystallite_partionedF(1:3,1:3,g,i,e), &
|
temp_33 = math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), &
|
||||||
math_inv33(crystallite_Fp0(1:3,1:3,g,i,e)))
|
math_inv33(crystallite_subFp0(1:3,1:3,g,i,e)))
|
||||||
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
||||||
temp_3333(1:3,1:3,p,o) = math_mul33x33(math_mul33x33(temp_33,dLpdS(1:3,1:3,p,o)),invFi)
|
temp_3333(1:3,1:3,p,o) = math_mul33x33(math_mul33x33(temp_33,dLpdS(1:3,1:3,p,o)),invFi)
|
||||||
|
|
||||||
temp_33 = math_mul33x33(math_mul33x33(crystallite_partionedF(1:3,1:3,g,i,e), &
|
temp_33 = math_mul33x33(math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), &
|
||||||
crystallite_invFp(1:3,1:3,g,i,e)), invFi0)
|
crystallite_invFp(1:3,1:3,g,i,e)), invFi0)
|
||||||
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
||||||
temp_3333(1:3,1:3,p,o) = temp_3333(1:3,1:3,p,o) + math_mul33x33(temp_33,dLidS(1:3,1:3,p,o))
|
temp_3333(1:3,1:3,p,o) = temp_3333(1:3,1:3,p,o) + math_mul33x33(temp_33,dLidS(1:3,1:3,p,o))
|
||||||
|
|
||||||
lhs_3333 = crystallite_dt(g,i,e)*math_mul3333xx3333(dSdFe,temp_3333)
|
lhs_3333 = crystallite_subdt(g,i,e)*math_mul3333xx3333(dSdFe,temp_3333)
|
||||||
|
|
||||||
|
temp_3333 = 0.0_pReal
|
||||||
|
temp_33 = math_mul33x33(crystallite_invFp(1:3,1:3,g,i,e), invFi0)
|
||||||
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
||||||
|
temp_3333(1:3,1:3,p,o) = math_mul33x33(temp_33,dLidS(1:3,1:3,p,o))
|
||||||
|
|
||||||
|
lhs_3333 = lhs_3333 + crystallite_subdt(g,i,e)*math_mul3333xx3333(dSdFiInv,temp_3333)
|
||||||
|
|
||||||
call math_invert(9_pInt,math_identity2nd(9_pInt)+reshape(lhs_3333,shape=[9,9]),temp_99,error)
|
call math_invert(9_pInt,math_identity2nd(9_pInt)+reshape(lhs_3333,shape=[9,9]),temp_99,error)
|
||||||
if (error) call IO_error(error_ID=400_pInt,ext_msg='analytic tangent inversion')
|
if (error) call IO_error(error_ID=400_pInt,ext_msg='analytic tangent inversion')
|
||||||
|
@ -1154,25 +1175,32 @@ subroutine crystallite_stressAndItsTangent(updateJaco)
|
||||||
dFpinvdF = 0.0_pReal
|
dFpinvdF = 0.0_pReal
|
||||||
temp_3333 = math_mul3333xx3333(dLpdS,dSdF)
|
temp_3333 = math_mul3333xx3333(dLpdS,dSdF)
|
||||||
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
||||||
dFpinvdF(1:3,1:3,p,o) = -crystallite_dt(g,i,e)* &
|
dFpinvdF(1:3,1:3,p,o) = -crystallite_subdt(g,i,e)* &
|
||||||
math_mul33x33(math_inv33(crystallite_Fp0(1:3,1:3,g,i,e)), &
|
math_mul33x33(math_inv33(crystallite_subFp0(1:3,1:3,g,i,e)), &
|
||||||
math_mul33x33(temp_3333(1:3,1:3,p,o),invFi))
|
math_mul33x33(temp_3333(1:3,1:3,p,o),invFi))
|
||||||
|
|
||||||
|
dFiinvdF = 0.0_pReal
|
||||||
|
temp_3333 = math_mul3333xx3333(dLidS,dSdF)
|
||||||
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
||||||
|
dFiinvdF(1:3,1:3,p,o) = -crystallite_subdt(g,i,e)* &
|
||||||
|
math_mul33x33(math_inv33(crystallite_Fp(1:3,1:3,g,i,e)), &
|
||||||
|
math_mul33x33(invFi0,temp_3333(1:3,1:3,p,o)))
|
||||||
|
|
||||||
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = 0.0_pReal
|
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = 0.0_pReal
|
||||||
temp_33 = math_mul33x33(crystallite_invFp(1:3,1:3,g,i,e), &
|
temp_33 = math_mul33x33(crystallite_invFp(1:3,1:3,g,i,e), &
|
||||||
math_mul33x33(math_Mandel6to33(crystallite_Tstar_v(1:6,g,i,e)), &
|
math_mul33x33(math_Mandel6to33(crystallite_Tstar_v(1:6,g,i,e)), &
|
||||||
math_transpose33(crystallite_invFp(1:3,1:3,g,i,e))))/detInvFi
|
math_transpose33(crystallite_invFp(1:3,1:3,g,i,e))))*detFi
|
||||||
forall(p=1_pInt:3_pInt) &
|
forall(p=1_pInt:3_pInt) &
|
||||||
crystallite_dPdF(p,1:3,p,1:3,g,i,e) = math_transpose33(temp_33)
|
crystallite_dPdF(p,1:3,p,1:3,g,i,e) = math_transpose33(temp_33)
|
||||||
|
|
||||||
temp_33 = math_mul33x33(math_Mandel6to33(crystallite_Tstar_v(1:6,g,i,e)), &
|
temp_33 = math_mul33x33(math_Mandel6to33(crystallite_Tstar_v(1:6,g,i,e)), &
|
||||||
math_transpose33(crystallite_invFp(1:3,1:3,g,i,e)))/detInvFi
|
math_transpose33(crystallite_invFp(1:3,1:3,g,i,e)))*detFi
|
||||||
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
||||||
crystallite_dPdF(1:3,1:3,p,o,g,i,e) = crystallite_dPdF(1:3,1:3,p,o,g,i,e) + &
|
crystallite_dPdF(1:3,1:3,p,o,g,i,e) = crystallite_dPdF(1:3,1:3,p,o,g,i,e) + &
|
||||||
math_mul33x33(math_mul33x33(crystallite_subF(1:3,1:3,g,i,e),dFpinvdF(1:3,1:3,p,o)),temp_33)
|
math_mul33x33(math_mul33x33(crystallite_subF(1:3,1:3,g,i,e),dFpinvdF(1:3,1:3,p,o)),temp_33)
|
||||||
|
|
||||||
temp_33 = math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), &
|
temp_33 = math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), &
|
||||||
crystallite_invFp(1:3,1:3,g,i,e))/detInvFi
|
crystallite_invFp(1:3,1:3,g,i,e))*detFi
|
||||||
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
||||||
crystallite_dPdF(1:3,1:3,p,o,g,i,e) = crystallite_dPdF(1:3,1:3,p,o,g,i,e) + &
|
crystallite_dPdF(1:3,1:3,p,o,g,i,e) = crystallite_dPdF(1:3,1:3,p,o,g,i,e) + &
|
||||||
math_mul33x33(math_mul33x33(temp_33,dSdF(1:3,1:3,p,o)), &
|
math_mul33x33(math_mul33x33(temp_33,dSdF(1:3,1:3,p,o)), &
|
||||||
|
@ -1180,11 +1208,15 @@ subroutine crystallite_stressAndItsTangent(updateJaco)
|
||||||
|
|
||||||
temp_33 = math_mul33x33(math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), &
|
temp_33 = math_mul33x33(math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), &
|
||||||
crystallite_invFp(1:3,1:3,g,i,e)), &
|
crystallite_invFp(1:3,1:3,g,i,e)), &
|
||||||
math_Mandel6to33(crystallite_Tstar_v(1:6,g,i,e)))/detInvFi
|
math_Mandel6to33(crystallite_Tstar_v(1:6,g,i,e)))*detFi
|
||||||
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
||||||
crystallite_dPdF(1:3,1:3,p,o,g,i,e) = crystallite_dPdF(1:3,1:3,p,o,g,i,e) + &
|
crystallite_dPdF(1:3,1:3,p,o,g,i,e) = crystallite_dPdF(1:3,1:3,p,o,g,i,e) + &
|
||||||
math_mul33x33(temp_33,math_transpose33(dFpinvdF(1:3,1:3,p,o)))
|
math_mul33x33(temp_33,math_transpose33(dFpinvdF(1:3,1:3,p,o)))
|
||||||
|
|
||||||
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
||||||
|
crystallite_dPdF(1:3,1:3,p,o,g,i,e) = crystallite_dPdF(1:3,1:3,p,o,g,i,e) - &
|
||||||
|
crystallite_subF(1:3,1:3,g,i,e)*sum(math_transpose33(Fi)*dFiinvdF(1:3,1:3,p,o))
|
||||||
|
|
||||||
enddo; enddo
|
enddo; enddo
|
||||||
enddo elementLooping6
|
enddo elementLooping6
|
||||||
!$OMP END PARALLEL DO
|
!$OMP END PARALLEL DO
|
||||||
|
@ -3585,13 +3617,17 @@ logical function crystallite_integrateStress(&
|
||||||
dT_dFe99, & ! partial derivative of 2nd Piola-Kirchhoff stress calculated by constitutive law
|
dT_dFe99, & ! partial derivative of 2nd Piola-Kirchhoff stress calculated by constitutive law
|
||||||
dFe_dLp99, & ! partial derivative of elastic deformation gradient
|
dFe_dLp99, & ! partial derivative of elastic deformation gradient
|
||||||
dFe_dLi99, &
|
dFe_dLi99, &
|
||||||
|
dFiInv_dLi99, &
|
||||||
|
dT_dFiInv99, &
|
||||||
dRLp_dLp, & ! partial derivative of residuum (Jacobian for NEwton-Raphson scheme)
|
dRLp_dLp, & ! partial derivative of residuum (Jacobian for NEwton-Raphson scheme)
|
||||||
dRLp_dLp2, & ! working copy of dRdLp
|
dRLp_dLp2, & ! working copy of dRdLp
|
||||||
dRLi_dLi ! partial derivative of residuumI (Jacobian for NEwton-Raphson scheme)
|
dRLi_dLi ! partial derivative of residuumI (Jacobian for NEwton-Raphson scheme)
|
||||||
real(pReal), dimension(3,3,3,3):: dT_dFe3333, & ! partial derivative of 2nd Piola-Kirchhoff stress
|
real(pReal), dimension(3,3,3,3):: dT_dFe3333, & ! partial derivative of 2nd Piola-Kirchhoff stress
|
||||||
dT_dFe3333_unloaded, &
|
dT_dFe3333_unloaded, &
|
||||||
dFe_dLp3333, & ! partial derivative of elastic deformation gradient
|
dFe_dLp3333, & ! partial derivative of elastic deformation gradient
|
||||||
dFe_dLi3333
|
dFe_dLi3333, &
|
||||||
|
dFiInv_dLi3333, &
|
||||||
|
dT_dFiInv3333
|
||||||
real(pReal) det, & ! determinant
|
real(pReal) det, & ! determinant
|
||||||
detInvFi, &
|
detInvFi, &
|
||||||
steplengthLp0, &
|
steplengthLp0, &
|
||||||
|
@ -3736,9 +3772,16 @@ logical function crystallite_integrateStress(&
|
||||||
call constitutive_TandItsTangent(Tstar_unloaded, dT_dFe3333_unloaded, Fe, g,i,e) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative in unloaded configuration
|
call constitutive_TandItsTangent(Tstar_unloaded, dT_dFe3333_unloaded, Fe, g,i,e) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative in unloaded configuration
|
||||||
Tstar = math_mul33x33(invFi, &
|
Tstar = math_mul33x33(invFi, &
|
||||||
math_mul33x33(Tstar_unloaded,math_transpose33(invFi)))/detInvFi ! push Tstar forward from unloaded to plastic (lattice) configuration
|
math_mul33x33(Tstar_unloaded,math_transpose33(invFi)))/detInvFi ! push Tstar forward from unloaded to plastic (lattice) configuration
|
||||||
|
dT_dFe3333 = 0.0_pReal
|
||||||
|
dT_dFiInv3333 = 0.0_pReal
|
||||||
|
temp_33 = math_mul33x33(Tstar_unloaded,math_transpose33(invFi))/detInvFi ! push Tstar forward from unloaded to plastic (lattice) configuration
|
||||||
do o=1_pInt,3_pInt; do p=1_pInt,3_pInt
|
do o=1_pInt,3_pInt; do p=1_pInt,3_pInt
|
||||||
dT_dFe3333(1:3,1:3,o,p) = math_mul33x33(invFi, &
|
dT_dFe3333 (1:3,1:3,o,p) = &
|
||||||
math_mul33x33(dT_dFe3333_unloaded(1:3,1:3,o,p),math_transpose33(invFi)))/detInvFi
|
math_mul33x33(invFi,math_mul33x33(dT_dFe3333_unloaded(1:3,1:3,o,p), &
|
||||||
|
math_transpose33(invFi)))/detInvFi
|
||||||
|
dT_dFiInv3333(o,1:3,p,1:3) = dT_dFiInv3333(o,1:3,p,1:3) + math_I3(o,p)*temp_33
|
||||||
|
dT_dFiInv3333(1:3,o,p,1:3) = dT_dFiInv3333(1:3,o,p,1:3) + math_I3(o,p)*math_transpose33(temp_33)
|
||||||
|
dT_dFiInv3333(1:3,1:3,o,p) = dT_dFiInv3333(1:3,1:3,o,p) - Tstar*invFi(p,o)
|
||||||
enddo; enddo
|
enddo; enddo
|
||||||
Tstar_v = math_Mandel33to6(Tstar)
|
Tstar_v = math_Mandel33to6(Tstar)
|
||||||
|
|
||||||
|
@ -3881,13 +3924,17 @@ logical function crystallite_integrateStress(&
|
||||||
if (mod(jacoCounterLi, iJacoLpresiduum) == 0_pInt) then
|
if (mod(jacoCounterLi, iJacoLpresiduum) == 0_pInt) then
|
||||||
temp_33 = math_mul33x33(math_mul33x33(A,B),invFi_current)
|
temp_33 = math_mul33x33(math_mul33x33(A,B),invFi_current)
|
||||||
dFe_dLi3333 = 0.0_pReal
|
dFe_dLi3333 = 0.0_pReal
|
||||||
|
dFiInv_dLi3333 = 0.0_pReal
|
||||||
do o=1_pInt,3_pInt; do p=1_pInt,3_pInt
|
do o=1_pInt,3_pInt; do p=1_pInt,3_pInt
|
||||||
dFe_dLi3333(o,1:3,p,1:3) = temp_33 ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j)
|
dFe_dLi3333 (1:3,o,1:3,p) = -dt*math_I3(o,p)*temp_33 ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j)
|
||||||
|
dFiInv_dLi3333(1:3,o,1:3,p) = -dt*math_I3(o,p)*invFi_current
|
||||||
enddo; enddo
|
enddo; enddo
|
||||||
dFe_dLi3333 = - dt * dFe_dLi3333
|
dT_dFiInv99 = math_Plain3333to99(dT_dFiInv3333)
|
||||||
dFe_dLi99 = math_Plain3333to99(dFe_dLi3333)
|
dFe_dLi99 = math_Plain3333to99(dFe_dLi3333)
|
||||||
|
dFiInv_dLi99 = math_Plain3333to99(dFiInv_dLi3333)
|
||||||
dRLi_dLi = math_identity2nd(9_pInt) &
|
dRLi_dLi = math_identity2nd(9_pInt) &
|
||||||
- math_mul99x99(dLi_dT_constitutive99, math_mul99x99(dT_dFe99, dFe_dLi99))
|
- math_mul99x99(dLi_dT_constitutive99, math_mul99x99(dT_dFe99, dFe_dLi99) + &
|
||||||
|
math_mul99x99(dT_dFiInv99, dFiInv_dLi99))
|
||||||
work = math_plain33to9(residuumLi)
|
work = math_plain33to9(residuumLi)
|
||||||
#if(FLOAT==8)
|
#if(FLOAT==8)
|
||||||
call dgesv(9,1,dRLi_dLi,9,ipiv,work,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li
|
call dgesv(9,1,dRLi_dLi,9,ipiv,work,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li
|
||||||
|
@ -3926,7 +3973,7 @@ logical function crystallite_integrateStress(&
|
||||||
|
|
||||||
!* calculate 1st Piola-Kirchhoff stress
|
!* calculate 1st Piola-Kirchhoff stress
|
||||||
|
|
||||||
crystallite_P(1:3,1:3,g,i,e) = math_mul33x33(math_mul33x33(Fe_new,Fi), &
|
crystallite_P(1:3,1:3,g,i,e) = math_mul33x33(math_mul33x33(Fg_new,invFp_new), &
|
||||||
math_mul33x33(math_Mandel6to33(Tstar_v), &
|
math_mul33x33(math_Mandel6to33(Tstar_v), &
|
||||||
math_transpose33(invFp_new)))/detInvFi
|
math_transpose33(invFp_new)))/detInvFi
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue